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GeoPRISMS RIE science guestions

 Where and why do rifts initiate?

 How does deformation evolve in space and time?




Two primary sites

Eastern North Amerlcan I\/Iargln . East Africa Rift System
| i B T oy . T
Magnetic anomalies #J ”“" 2 e i
] Rift basins ..” 7 o ' by magnitude)

4 Volcanos

— select Paleozoic sutures ~
1 - * - East Coast Magnetic
Anomaly




Passive rifted margin provides opportunity to consider full rifting evolution to seafloor
spreading and rich postrift evolution

Large along-strike variability in magmatism, rifting process and possible climate-
tectonic interactions

Leverages EarthScope and USGS activities

Encompasses full suite of stages in active rift development, including earliest stages
Large along-strike variability in magmatism, deformation, maturity, possible climate-
tectonic interactions

Leverages other US and international efforts/programs in East Africa

One active, one ancient system
Interesting differences, opportunities for comparison



Not all questions about rifts can be addressed in any two primary
sites. The Science Plan also highlighted these as high-priority
topics that also would enable linkage to MARGINS sites:

Rift obliquity

Rift processes as a function of strain rate

Volatiles In rift zone processes

Sediment production, routing and transport during and after
rifting

Discrete events at rifted margins



* Nov 2010: RIE Implementation Workshop, Sante Fe, NM

e Oct 2011: ENAM Implementation Workshop, Bethlehem, PA
e Oct 2012: EARS Implementation Workshop, Morristown, NJ
e 2015: GeoPRISMS Midterm Review

 Feb 2017: RIE TEI, Albuguerque NM

e Feb 2019: This meeting

GeoPRISMS adopted phased funding model for major field efforts in primary
sites.

« ENAM: ~2012-2013

« EARS: ~2014-2015



Eastern North American Margin
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Eastern North American Margin

The role of tectonic and magmatic inheritance in rifting and
rift evolution

The role of magmatism in rifting, breakup, and post-rift
lithospheric evolution

The relationships between breakup, rift-related magmatism,
and CAMP

The along-strike transition from magma-rich to magma-poor
extension at breakup

The evolution of segmentation from initial rifting to mature
seafloor spreading

Mass and elemental fluxes into and out of the sedimentary
wedge

Factors that control offshore landslides and their distribution
Post-rift margin evolution, drivers and responses:
subsidence, epeirogeny, dynamic topography, landscape
evolution, erosion, deposition

Relationships between rift structures and seismic hazard
within ENAM

Understanding the passive-margin sedimentary record:
comparative studies of exposed and buried margin
sedimentary sequences




Examples of ENAM-focused research

« ENAM Community Seismic Experiment, 2014-2015

 Data enabling studies of margin structure and processes across
temporal and spatial scales, from slope failure to lithospheric structure

 Geochemical studies of age and origin of magmatism
 Slope stability and submarine landslides

« Complementary EarthScope studles Sull
preceded extension, onshore Trift basins, etc

e Complementary USGS studies of rift and postrift margin
evolution

e Funding-for work in thls primary site has come from a range of
NSF programs, mcludrng EarthScope GeoPRISI\/IS and more,
and from USGS S
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e« Deployment of BB onshore stations in May
: 2014 and recovery in May 2015

* Onshore/offshore active source seismic
program on R/V Langseth, R/V Endeavor, and
onland in Sept-Oct 2014

» Onshore active-source experiment in summer

Em CSE team: Harm Van Avendonk (UT Austin),
Beatrice Magnani (SMU), Donna Shillington (LDEO),
Margaret Benoit (TCNJ), Brandon Dugan (Rice),
Jim Gaherty (LDEO), Matt Hornbach (SMU), Dan
Lizarralde (WHOI), Maureen Long (Yale), Steve
Harder (UTEP), Anne Becel (LDEO), Gail Christeson
T (UT Austin). Lara Wagner (UNC/DTM)



e 79 scientists and students from 49 universities
participated in field work

« Training workshops in active source seismology held
at UTIG and LDEO which 34 people in total attended
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C) Subduction beneath Southern Margin of Laurentia ~ 300 Ma

Mazza, Gazel et al, 201
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Link between postrift sedimentary history
and recent slope stability
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East Africa Rift
System

How does the presence or absence of
an upper-mantle plume influence
extension?

 How does the mechanical heterogeneity
of continental lithosphere influence rift
Initiation, morphology, and evolution?

 How is strain accommodated and
partitioned throughout the lithosphere,
and what are the controls on strain
localization and migration?

« What factors control the distribution and
ponding of magmas and volatiles, and
how are they related to extensional fault
systems bounding the rift?

 How does rift topography, on either the
continental- or basin-scale, influence
regional climate, and what are the
associated feedback nrocesses?
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s.Recent data collectionsefforts
e=aerormation merent parts of thesk

and other funding)

» Geodetic data synthesis and analysis
e Age and origin of magmas within and around rift

« Complementary existing and planned projects in EARS (e.g.,
CRAFTI, PRIDE, SEGMeNT, TRAILS, others)

—~unding for work In this primary site

ES, GeoPRISMS and others as We
orograms

nas come from a range of

NSF programs including Geophysics, Continental Dynamics,

I ‘as from international



Galema Range

Border Fault

Chiasera, Rooney et al, 2016
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Composition, origin and timing of EARS

magmatism

Future Afar Margin
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Latitude (° S)

Volatiles and deformation
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Tian & Buck, JGR, in press

a) Model with horizontal fabrics
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See Xiaochuan Tian’s poster

b) Model with vertical fabrics

1) 50km of extension
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Examples of
thematic research

Numerical modeling to understand
different aspects of rifted margin
development

¢) Model with oblique fabrics
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RIE-related work iIs
ongoing and results still
to come!

Examples:

Turkana Rift Arrays to Investigate
Lithospheric Structure (TRAILS)
NSFGEO-NERC funded project
Bendick, Bastow, Ebinger, Ayele, Lewi

Multi-disciplinary Observations of Degassing and
Extensional Tectonics (MODEST)
NSF-GeoPRISMS funded project
Fischer, Muirhead, Scholz, Dufek

A TRAILS Campaign GPS |
ATRAILS Continuous GPS (S

TRAILS




e Tracking fluids (volatiles and magmas) through the
lithosphere and with time

e Controls on deformation and localization at different
temporal scales

o Surface mass sedimentary fluxes and feedbacks with
rifting



RIE TEI, Feb 2017, Alouquerque  Miniworkshops

* Student/postdoc symposium: ~65 « 2011: GeoPRISMS Community Seismic
attendees Experiment along the ENAM Luncheon

e Main meeting:133 attendees, 59 of  2013: Exploring the interplay between
whom were students and postdocs solid Earth tectonics and surface

processes using community codes

e 2013: Collaborative Efforts in the East
African Rift System

e 2015: From rifting to drifting: evidence
from rifts and margins worldwide

« 2016: Volcanoes in Extensional and
Compressional Settings

e 2017: ENAM science advances: progress
and outlook

» Spanned wide range of expertise,
Institutions.
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