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Slip deficit model from Fournier and
Freymueller (2007). Data (red) and model
(black) velocity vectors are shown. All of the

o : ) data have been corrected for arc translation
used in this study. Orange dots are GPS stations with (Cross and Freymueller, 2007)

significant volcano deformation.

Tes 150"
Topographic map and tectonic setting of the study area
on the Alaska Peninsula. Blue dots are GPS stations



1. Given a more dense GPS network, what 1s the along-

strike variation in the locking distribution?

2. Does the estimated locking distribution correlate with
features of the overriding or down-going plates from

other observations?
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1. Re-survey pre-existing

campaign GPS sites (35 sites)
within Shumagins and the 1938
rupture zone to the northeast in May

— June 2016;

2. Current GPS site network has
much lower uncertainties than the

previous one;

3. Site velocity constant in time

except one SSE (eg. Station AB07).




ABO07-seasonal (horizontal detrended)
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Figure 5. Time Series of GPS station AB0O7, detrended based on pre-SSE velocity
(GRACE-derived seasonal variation removed and residual seasonal terms are
estimated and shown). The strongly shaded area contains 68% SSE deformation
(2011.5 £ 0.37). The weakly shaded area contains 95% SSE deformation (2011.5
+ 0.83). The counterpoint of the event at 2011.5.
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vertical velocities
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Best fit model for inverted locking
distribution by using horizontal and vertical
velocities both (smoothing factor = 4e8)
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Possible factors explaining the inconsistency:

* Differences in the published geometry of the plate
interface

---- Do not explain the inconsistency

* (@lacial Isostatic Adjustment
--- Existing models do not explain it

e Reference frame errors
--- Do not explain it

For the following models, we only use
horizontal component of GPS velocities.
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Variation of locking fraction Along Downdip in Each Segment
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1. Obvious step-wise decreases in the width of
the locked region from the NE to SW along-
strike;
2. A sharp decrease from strongly locked to
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weakly locked within a short distance from
trench towards downdip in the Kodiak
segment
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L_ocking Distribution vs. Pre-existing Fabric
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Digital Magnetic Anomaly polygons provided by
Peter Haeussler and Keith Labay

[Origin: Atwater 1989; Atwater and Severinghaus, 1989]

* Average rate ~60 mm/yr
» Spreading age: 80 to 56 Ma (44?)

« Farallon-Pacific spreading center
4 * Half rate ~40 mm/yr
» Spreading age: 100 to 55 Ma

f « Kula-Pacific spreading center

' » Vancouver-Pacific spreading center
« Similar rate as Farallon-Pacific
» Spreading age: 53 to 30 Ma

Boundary 1:

the cessation of the Kula-Pacific spreading
(intermediate locked) and beginning of the Vancouver-
Pacific spreading (strong locked).

Boundary 2:
the northern portion of the Farallon plate
broke off and became the Vancouver plate.

Boundary 3:

a major orientation change in two younger
sections of pre-existing fabric near the trench (A triple
junction or the attachment of Kula-Pacific spreading?).
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Seismicity (Magnitude > 3.0) from the Alaska
Earthquake Center from 1990 to present

Shallow earthquakes:

* More common in the creeping-dominated area and
near trench in the strongly locked area, less
common in between.

Quter-rise earthquakes:

* More abundant in the creeping-dominated area

Intermediate-depth earthquakes:

* More in the creeping-dominated area and in the
strongly locked area, then less in between.



Conclusion

1. There is an inconsistency between the horizontal and vertical
velocities, and long-wavelength systematic misfits in the vertical

velocities still remain unsolved.

2. The width of the locked region decreases step-wise from NE to

SW along strike.

3. There are three sharp boundaries separating segments with

different fault locking.

4. The changes in pre-existing seafloor fabric orientation
contributes significantly to the change in fault locking and

subduction seismicity.






Future Questions

Question 1:

Given the three sharp
boundaries that we found in the
estimated locking distribution, are there
other properties (eg. evidence of potential
active faults, sediment structure, etc) that
correlate with these boundaries with new
seismic  observations (eg. P-wave
velocity, seismic reflection, earthquake

mechanism, etc.)?
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Question 2:

Can a different plate interface
model, especially in the shallow region,

fit the geodetic data better?

* Is all slip on the plate interface? Or is there
a combination of slip on the plate interface
and an active fault near the trench? An
active fault in the forearc might better

predict deformation on Chirikof Island.

* What exactly is the geometry of the slip

interface located?

TModel_Prediction (10mm/yr)

IObservation (10mm/yr)
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Question 3:

Can improved seismic observations help
explain the short wavelength variation in
shallow earthquakes and intermediate-depth

earthquakes?

* At what depth do those shallow earthquakes occur?
Are they plate interface events or in the upper plate?
What possible mechanisms might explain their

correlation with locking of the interface?

* What is a possible mechanism for abundant
intermediate-depth earthquakes in strongly locked

area?
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