Big Geodynamic Questions about Rifting

What is the role of pre-existing crustal and lithospheric structure?

Are big hot mantle plumes needed to initiate continental breakup?



Big Geodynamic Questions about Rifting Eastern North America

What iIs the role of pre-existing crustal and lithospheric structure?
What was the role of the Appalachians in breakup of Pangea?
(The biggest pre-existing structure affecting continental breakup)
Are big hot mantle plumes needed to initiate continental breakup?

Why did the Central North Atlantic Magmatic Province formed
just as rifting really got going?

(CAMP is one of the biggest ‘Large Igneous Provinces’)
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Data Inspires Model Development
Models Guide Data Collection

Data Disproves Some Models
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Data Inspires Model Development
Models Guide Data Collection

Data Disproves Some Models

But, it is always more complex



How did the Appalachians affect ENAM rifting?

How did they affect mantle melting and emplacement of magma?

How did they affect when rifting started and how it evolved?

-One specific example: Were the Newark Series Basins formed
during 30 Ma of slow rifting (i.e. plate separation) or via
‘orogenic collapse’?



CAMP Magmatism is partly along the collision zone
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Numerical Models do a great job for lithosphric extension and faulting
But still often do not even try to deal with magmatism
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Plume Lithosphere interactions are beginning to be modeled
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Models with reasonable thermal structures & rheologies are
starting to include mantle melting
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Davis et al., 2017
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Dating of Large Igneous Provinces (LIPs) shows that
they form just before most major rifting events
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For “normal” lithosphere the force to magmatically rift is
~ 10 time less than to tectonically rift
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Example of Seismic Data East of Greenland Showing
Seaward Dipping Reflectors Thought to be VVolcanic Flows
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Numerical Work on Seaward
Dipping Reflectors: Numerical model results
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Constant thermal structure with Plasticity

Dike injection zone
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Models with thermal evolution
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Extension 1s Seen In Eastern

North America for ~30 Ma before CAMP Magmatism
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Syn- and Post-Orogenic Extension IS
Seen in Virtually all Mountain Belts

CRUSTAL THICKENING Fg
<

LATE OROGENIC COLLAPSE

Fig. 1. Extension in mountain belts for tectonic settings (a and b) crustal shortening and (c) late orogenic
extension. Fg is gravitational forces, and Ft is tectonic forces.

Malavielle (1993)
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Modeling of Syn-Extension is quite limited
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Great Modeling Challenges Related to ENAM

The impact of plumes on rifting

-Uplift and driving forces
-Active early mantle melting and later passive melting
-Magma interaction with the lithosphere

he impact of orogeny on rifting

-Interaction of a plume and a mountain belt
-Basic controls on extension
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