UNIVERSITY OF

program for western Canada Past and current relevant induced-seismicity research

An induced seismicity

David W. Eaton

NSERC/Chevron Chair in Microseismic System Dynamics Department of Geoscience

With contributions from and discussions with: Xuewei Bao, Michael Brudzinski, Gail Atkinson, Ryan Schultz, many students and postdocs

Injection induced seismicity

Eaton, 2016 (CETI Journal); modified from Ellsworth, Science, 2013

Role of pore pressure

Rayleigh et al., Science, 1976

Rangely: model confirmation Oklahoma: relatively small porepressure increase (~0.07 MPa) implies critically stressed faults

Induced seismicity in western Canada

Induced seismicity from hydraulic fracturing (H) more prevalent than in the U.S.

Induced seismicity in western Canada

- Estimated that 0.3% of HF wells are associated with *M* > 3 seismicity.
- In some cases, seismic moment exceeds bound from McGarr formula

Table 1Summary of Seismicity Associated with Wellsin the Western Canada Sedimentary Basin			
	Disposal	HF	Tectonic M ≥3
Number of candidate wells (1985–2015)	1236	12,289	
Number of wells associated with M ≥3	17	39	—
Association % for wells $(\mathbf{M} \ge 3)$	~1%	~0.3%	—
Number of M ≥3 (1985–2009)	126*	13*	14
Number of M ≥3 (2010–2015)	33*	65*	7
Association % for M ≥3 (2010–2015)	31%	62 %	7%

*These totals each include 18 events for which both disposal and hydraulic fracture (HF) wells could be associated, 8 of which occurred from 2010 to 2015; in assessing % association rates, each such event has been counted as ½. See Data and Resources for lists of associated wells and events.

Atkinson et al., SRL, 2016

Case Study: Fox Creek Region, AB

- Fox Creek area was seismically quiescent until 2013
- Subsequently, induced seismicity has been linked to hydraulic fracturing of the Duvernay shale

Bao and Eaton, Science, 2016

Case Study: Fox Creek Region, AB

Σ=-1.5

- Seismicity from December 2014 to March 2015
- Methods: matched filtering, doubledifference event locations
- Strongly clustered near treatment wells at 6 pads

Bao and Eaton, Science, 2016

Seismicity vs. Injection Data

- Largest event during flowback but unusually low fluid recovery
- Episodic seismicity persists throughout W2015 (S1, S2, S3) -- but lacking typical aftershock sequence
- Maximum magnitude (M_w 3.9) at upper limit of bound using McGarr formula

Elastic response of solid matrix

Linear poroelastic simulations indicate that "elastic response of the solid matrix, instead of fluid diffusion, is more likely the dominant factor for the induced earthquakes shortly after fluid injection."

Deng et al., GRL, 2016

Multiple strands – varying response

Seismicity in the BC Montney Trend

Late Carboniferous normal faults, Fort St. John Graben system (FSJG)

Largest events have a low-angle thrust or reverse mechanism (Zhang et al., JGR, 2016; Mahani et al., submitted)

Intercutaneous wedge? (Skuce, 1996)

Profile B, McMechan 1985

Seismicity in the BC Montney Trend

Intercutaneous wedge (ICW): "The body of rock situated between the hinterland verging upper detachment (UD) and the foreland-verging lower detachment (LD)".

Skuce, 1996

Profile A, Hinds and Cecile, 2003

CCArray and past/current stations

2000.01

Courtesy P. Audet

M > 3 seismicity since 2008

Potential induced events in red

2016.11

Courtesy P. Audet

Source: Earthquakes Canada

Region of interest for induced seismicity

2016.11

Courtesy P. Audet

Considerations for induced-seismicity monitoring

Courtesy P. Audet

- Utilize existing broadband seismograph stations (possibly by enhancing existing equipment or extending the time period)
- Monitoring may require a longer operational time window than is needed for TA-style deployment (→ fist in, last out?)
- Desirable to achieve uniform magnitude of completeness (M ~ 2?), publicly accessible ground motion data and capability to produce Shakemaps

Shakemap M_w 5.8, Pawnee OK 2016/09/03 Source: USGS

Summary

- Localized areas of elevated IS risk generally occur near (< 200 km) the deformation front, suggesting a causal link (stress? Intercutaneous wedge?)
- 3. Fault activation may be triggered by pore pressure or stress. Pressurized faults exhibit persistent seismicity
- Opportunity to combine fundamental research with an urgent societal issue of high economic consequence