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Motivation & Outline

1. How is strain vertically distributed during rifting?
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2. What are typical rates of mantle cooling/upwelling during
extension?
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Approach: use high-T thermochronology and diffusion
speedometry to harness thermal signature of geodynamics



1. Strain distribution and thermal
histo
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1. Strain distribution and thermal
hisfory

epth¥dependent thinning
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1. Strain distribution and thermal
history

 Uniform thinning drives cooling at
all structural levels

 Partitioning of strain into mantle
lithosphere drives conductive
heating of lower/middle crust
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 Is this signal recorded in
attenuated lower crust?
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1. Strain distribution and thermal
hlsto

Applrczltion: attenuated lower crust; Ivrea Zone, Italy
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1. Strain distribution and thermal

histo

tl’g{f-Pb thermochronology, Ivrea Zone

garnet

100pm

A__ zircon

rutile

189 Ma

£

276 Ma
00274 Ma

 Zircon texturally younger than rutile, yet >90 Ma older

» U-Pb rutile system reset ~180-190 Ma



1. Strain distribution and thermal

}yS u(t)ig};—Pb thermochronology, Ivrea Zone
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1. Strain distribution and thermal

- utile’U-Pb thermochronology, Ivrea Zone
history N
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* 4 km depth interval of granulites (at 20° C/km AT is 80° C)
* 5° C/Ma cooling, 40 Ma age spread is expected
* FElevated dT/dz at onset of rift-related exhumation, ~180 Ma



1. Strain distribution and thermal
Qis or

evzs‘,}é thermal history, Ivrea Zone
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1. Strain distribution and thermal
Qis or

evzs‘,}é thermal history, Ivrea Zone

Exhumation Thinning
mode mode
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1. Strain distribution and thermal

}glsgl(g){Xagnitude thinning of the lithospheric mantle
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Thermal history consistent with preferential thinning of
lithospheric mantle (6: > 1:4)



2. Rates of mantle cooling/upwelling

- Duration of rifting critical for melt generation (Bown & White 1995)
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2. Rates of mantle cooling/upwelling

- Duration of rifting critical for melt generation (Bown & White 1995)
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- Cooling rate of lithospheric mantle is a good indicator of melt generation
during extension



2. Rates of mantle cooling/upwelling

- Lanzo peridotite massif, Italy
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2. Rates of mantle cooling/upwelling

- Porphyroclastic peridotites of exhumed lithospheric mantle




2. Rates of mantle cooling/upwelling

- Diffusional equilibration of opx during mantle upwelling
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2. Rates of mantle cooling/upwelling

- Diffusional equilibration of opx during mantle upwelling
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Ybin OPX

2. Rates of mantle cooling/upwelling

- Diffusional equilibration of opx during mantle upwelling
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2. Rates of mantle cooling/upwelling

- Cooling rate determination by opx speedometry
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2. Rates of mantle cooling/upwelling

- Implications of slow cooling, Lanzo peridotite body

- 10 °C/Ma cooling of lithospheric mantle achieved when [=5; slow
enough to suppress melt generation
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Conclusions

1. U-Pb thermochronology and diffusion speedometry afford
opportunity to recover thermal history information relevant
to extension.

2. Lower crust of Adriatic margin underwent reheating ~180
Ma, contemporaneous with the onset of mantle
exhumation.

3. Adriatic lithospheric mantle cooled at ~10 °C/Myr, slow
enough to suppress significant melt generation.
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