A bottom-driven mechanism for distributed faulting in the Gulf of California Rift

Patricia Persaud¹, Eh Tan², Juan Contreras³ and Luc Lavier⁴

¹ppersaud@lsu.edu, Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803;² Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan; ³ Centro de Investigación Científica y de Educación Superior de Ensenada, BC, Mexico; ⁴ University of Texas Austin, Institute for Geophysics, Austin, TX 78712

Introduction

Observations in the continent-ocean transition of the Gulf of California (GOC) show multiple oblique-slip faults distributed in a 200x70 km² area (Fig. 4). In contrast, north and south of this broad pull-apart structure, major transform faults accommodate plate motion. We propose that the mechanism for distributed faulting results from the boundary conditions present in the GOC, where basal shear is distributed between the southernmost fault of the San Andreas system and the Ballenas Transform fault.

We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust/upper mantle, and (2) the rift obliquity. We explore the effects of bottom-driven shear on the deformation of an elastic-plastic layer with the help of pseudo-three dimensional numerical models that include side forces.

FIG. 1. a) Edge-driven models of deformation assume that mainly normal stresses at the edge of plates are important for driving deformation. **b)** Bottom-driven models of deformation assume that in addition to the edge forces, flow in the lower crust and mantle is significant for determining the style of deformation.

 \mathbf{V}

• Evidence for lower crustal flow. **Rise** 1 - r2+1/2D Numerical Models r = -DISTRIBUTED FAUTING IN A BRITTLE 5-KM THICK UPPER CRUSTAL LAYER OVERLYING A 15-KM THICK LOWER **CRUSTAL CHANNEL** Distance (km) Delocalized deformation 0.01 0.05 0.09 0.13 0.18 0.22 0.26 0.30 after 250 kyr Total Strain 5 km thick brittle layer with $\mu = 0.4$ and 15 km lower crustal channel with $\eta = 5 \times 10^{20}$ Pa.s Distance (km) Initial shear stress in the crust 0.25 2.47 0.6 1.44 0.7 1.02 FIG 6. a) Accumulated plastic strain after 250 Kyr and b) 0.9 0.29 initial shear stress for a numerical model with a 5-km thick brittle layer. The viscosity of the lower crustal channel is 5x10²⁰ Pa.s, and linear velocity boundary conditions are applied at the base of the lower crust.

2017 GeoPRISMS Theoretical and Experimental Institute on Rift Initiation and Evolution

Tiburon Island; GB: Guaymas basin; IT: Isla Tortuga; FB: Farallon basin; PB: Pescadero basin; AB: Alarcón basin; EPR: East Pacific

FIG 7. Models with varying obliquity labeled in the top left of each model. The time for each model run, t, is indicated next to the obliquity. The vertical exaggeration of the topography is noted at the top right of each panel. The total plastic strain (x 100%) is shown in all cases with hot colors representing zones of high strain.

Application to the Northern Gulf

- Our model with an obliquity of 0.7, and linear basal velocity boundary conditions reveals a delocalized fault pattern of contemporaneously active faults, multiple rift basins and variable fault dips representative of faulting in the N. Gulf.
- The r=0.7 model is able to predict the broad geometrical arrangement of the two Upper Delfin, Lower Delfin and Wagner basins as segmented basins with tilted fault blocks, and multiple oblique-slip bounding faults characteristic of incomplete strain-partitioning. We also confirm with our numerical results that numerous oblique-slip faults accommodate slip in the study area instead of throughgoing large-offset transform faults.

FIG 8. Comparison between **a)** a representative seismic profile across the northern Gulf from Persaud et al. (2003), and **b)** a 800,000-yr model run with linear basalboundary conditions, and r=0.7 (θ = 23°). The shorter yellow line in Fig. 4a marks the location of the seismic profile.

FIG 9. a-b) Comparison between a deep seismic profile across the N. Gulf from Sojo-Amezquita (2012), and c) a 440,000-yr model run with linear basal-boundary conditions, and r=0.25 (θ = 72°) (Fig. 7d). The seismic profile location is marked with a cyan line in Fig. 4a, and is obliquely oriented with respect to the basin axes. The horizontal scales in a), b) and c) are approximately the same. The vertical exaggeration in a) and b) is roughly 3 in the sedimentary

Conclusions

layers and 4 in the basement

- Strain localization results in our models when the basal shear abruptly increases in a step-function manner while obliqueslip on numerous faults dominates for distributed basal shear (Fig. 7).
- We show in a 2-layer numerical model that lower crustal flow can produce multiple faults in the overlying brittle crust in the case of distributed basal shear (Fig. 6). In this instance, the flow essentially drives the deformation.
- We further explore how the faulting style varies with obliquity and demonstrate that the delocalized faulting is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions (Fig. 8 and 9), consistent with GOC observations.

References

Persaud P., E. Tan, J. Contreras and L. Lavier, (2016) A bottom-driven mechanism for distributed faulting in the Gulf of California Rift, Tectonophysics, http://dx.doi.org/10.1016/j.tecto.2016.11.024 (in press -Special Tectonophysics issue on the Gulf of California).

