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Chamber Triggered Externally Triggered

Much of our understanding for the initiation of large volume,
caldera forming eruptions comes from modeling.

Q: Would the timescales associated with various
triggering mechanisms differ?
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e.g Roche et al,, 2000; Roche and Druitt 2001; e.g. Allen etal. 2012 ; Greggetal. 2012, 2015;
Carrichi et al. 2014; Malfait et al. 2014 de Silva and Gregg 2014




Hypothesis: We can use volatiles concentrations
and gradients (namely H,0 and CO,) to quantify

the timescales of opening behavior.

Shea et al. 2015

* All inclusions are crystal & bubble-free
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Three supereruptions with different characteristics

Bishop Tuff Huckleberry Ridge Oruanui, NZ
1 760 ka, 650 km3 2.08 Ma, 2500 km3 s 25.4 ka, 530 km3

No significant time Significant time
breaks observed,; breaks between fall
entire eruption layers, the longest
Inferred to have
taken ~6 days

Subtle reworking in
the fall deposit
iIndicates multiple
short time breaks

on the order of
weeks to months

| Wilson and Hildreth 1997 [

¥ Wilson 2009 Wilson 2001
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A in opening behavior reflect |
gy N, processes associated with
' ol eruption initiation?
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Taupo Volcanic Zone (TVZ)

Modern TVZ began around 2 Ma;
predominantly andesite. At 1.6 Ma
- _ 3 switched to dominantly rhyolitic
— volcanism (10,000 km3).
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Oruanui Supereruption, NZ (25.4 ka, 530 km3)

Lateral injection of a
foreign magma body

Phase 3
The longest time gap is
between phase 1 and phase
2, estimated to be on the
order of several weeks.

1 Allan et al. 2012
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re there timescale indications associated with
the initial fall deposits of the Oruanui eruption,

where rifting facilitated its initiation?

METHOD 1: H diffusion
through quartz on
timescales of days

METHOD 2: H,0 and CO,,
gradients formed in REs

during final ascent;
timescales of hours



H,O and CO, Concentrations for Melt Inclusions

BISHOP TUFF
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Increased scatter in H,0
concentration from Mls
(mostly F1 &F3) suggest

effected by post-entrapment

diffusive loss

© F1, This study

[ F2-F9, Roberge et al. 2013 \ &

H20 ( .%)

Melt Inclusions (n=95)



Diffusive Loss of H,0 from entrapped MIs
during magma ascent

BISHOP TUFF
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Method I: Diffusion of H through Quartz

< Initial H,0 Concentration -Highest melt inclusion values
< External H,0 Concentration - Reentrant interior value

b1 = Diffusion model (Qin et al. 1992, Cottrell et al. 2005)

1 = Diffusion Coefficient (Severs et al. 2007)
| = Partition Coefficient (Qin et al. 1992)

» Size of inclusion and distance to rim




Timing of opening behavior: evidence for sluggish start

Majority of
melt inclusions
require 1-5
days in contact

with a lower
H,0 melt.

B BB F1
A F2
A F3
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Different decompression histories into a
single clast?

Prolonged ascent, low
overpressure in the system -

perhaps indicative of external
control?




Reentrants to calculate final ascent (H,O & CO,)

Durlng decompressmn, gas exsolves into bubbles. This drives
H,0 & CO, gradients in enclosed melt pockets (reentrants) that
can be modeled to estimate decompression rate.
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Assumptions input into the Liu et al. 2007 model:
1. Initial Conditions (Based on Melt Inclusion values or Innermost Reentrant
Concentration)
2. Initial exsolved gas
3. Fragmentation Threshold = 10 MPa (when quenching is assumed to have occurred)
4. Constant Decompression




Modeled H,O and CO, (when present) gradients from 26 reentrants
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Oruanui (530km?, 25.4ka)
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Locations

@ Huckleberry Ridge @ Bishop < Oruanui X No CO,
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Ascent rate seems to increase most
significantly in the Oruanui between
Phase 1/Phase 2 (central vent) to
Phase 3 (elongated source, higher
eruptive volume)




Evidence that rifting strongly influenced the
Oruanuli initiation

<> Time breaks in deposition.

< Foreign magma body laterally
injected, facilitated through rifting

< H,0O scatter in MIs- prolonged
ascent, potentially low overpressure

< Slow final ascent rates for Phase 1 &
2, with increased rates associated
with Phase 3

W8 Allan et al. 2012
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