Ascent Rates of Rhyolitic Magma at the Onset of Supervolcanic Eruptions
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observed in the first 0.5 meters of the Huckleberry Ridge fall deposit (red star). The initial concentration for all MIs lies within the shaded field (HRT~4.5 wt.%, Oruanui ~5.5 wt.%). Inclusions containing

H,O concentrations close to the shaded region imply ascent timescales of less than 12 hours and thus most closely represent

The fine-grained ash to fine lapilli fallout deposit at the base of the Huckleberry Ridge Tuff - : : : : : .
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grading, and rain interaction (Fig. 1). Each layer is interpreted to represent a time break each sample vary by less than a factor of two. These patterns are best explained by diffusive loss of H from MIs
on the order of days [2,3]. during ascent. The highest H, O values reflect the magma H,O content at the storage depth prior to eruption, Scatter in H, O concentrations in quartz-hosted

inclusions from any single fall layer or pumice
clasts suggests that individual grains that initially
experienced different decompression histories
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experiemental data by [7] ’ | explosive phase (Fig. 8).

Bish op Tuff [0 76 Ma, 650 km3] and lower values reflect variable diffusive losses [3].

. Calculating the timescale of diffusive loss of H,0 from each MI through the quartz host requires estimates of:
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Fig. 8: (left) Simplified skematic for the ascent history preserved by single
depositional layers or pumices that contain a large degree of scatter in H,0.

(2) the H, O partition coefficient between quartz and melt (0.001; [8]),

Fig. 9: (below) Each diamond represents the ascent rate modeled for an
individual reentrant, positioned according to their relative stratigraphic
location. The bottom of the diagram represents the earliest erupted material.
Diamonds containing an X represent reentrants that lacked measurable CO,,
meaning ascent rates were constrained by modeling H,O solely.
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, '% (3) the initial MI H,O concentration, estimated using trace element
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(4) the external H,0 concentration, based on the inner most reentrant
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sluggish initiation, perhaps indicative of low overpressure in the system.
The whole of the Oruanui eruption consists of ten phases, where time breaks exist between five of Evidence for an external control facilitating movement towards the surface?
the transitions [5]. The most defined time gap is between phase 1 and 2, representing an eruption ACKNOWLEDGEMENTS
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