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1. Introduction

Water that cycles through subduction zones regulates fundamental
tectonic processes, including the stress state of the megathrust fault at
the plate interface!, but the volume of pore and mineral-bound water
that is subducted with the downgoing oceanic plate is poorly con-
strained. Here, we use seafloor electromagnetic data to create a compre-
hensive electrical conductivity image that illuminates a complex system
of water-rich faults at the Middle America Trench offshore of Nicaragua.
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Electrical conductivity is a physical pa-
rameter that is primarily sensitive to
the presence of fluids and partial melts.
With models of conductivity, we can
detect fluid migration pathways and
estimate porosity of the subsurface to
o constrain the cycling of water between
oo ool e 29 the surface and the deep Earth.
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3. Marine electromagnetic methodology

« EM receivers are deployed onto the seatloor and record horizontal electric
and magnetic fields

« Natural oscillations of passive EM fields provide low frequency energy to
probe deep crustal and upper mantle structure (magnetotelluric method)

« High frequency energy attenuated by seawater is injected through a towed
EM transmitter with a dipole source (controlled-source EM method)

Inverted Long-Baseline
Navigation (ILBL)

Marine EM survey operations.
Broadband ocean bottom EM re-
ceivers (OBEM) are deployed from a
ship and record electric and mag-
- netic fields on the seafloor. An EM

EM Recelvers transmitter is towed behind the ship
to collect controlled-source data. A
typical survey is performed in a
single month-long voyage.

Results from:
Naif et al. (2015), Water-rich bending faults at the Middle America Trench, Geochem. Geophys. Geosyst.
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4. Marine EM Survey of the MAT

« EPR-sourced Cocos plate (24 Ma) subducts offshore of Nicaragua
» Spreading fabric parallel to trench; trench flexure reactivates abyssal faults
 Total of 50 Rx deployed along 280 km transect spaced 10 and 4 km apart
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Map of EM survey. Black squares show OBEM receivers. Solid orange line is the Tx tow

path. A total of 44 receivers recorded CSEM data, and all 50 recorded MT data. The results
presented here consider receivers deployed on the incoming plate and trench.

5. 2D Inversion Results
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Conclusions

« Outer rise faults provide porous/permeable pathways that hydrate the incoming oceanic crust
« Lower crust porosity is doubled. Significantly more pore water is subducted than previous estimates?
« Mantle stays resistive, suggests less than 20% serpentinization#. Favors a closed, low-fluid-flux system
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Increasing crustal porosity with proximity to the trench

a, Lines show the averaged bulk resistivity as a function of depth of five 20
km wide sections from the trench to 100 km seaward. b, bulk porosity of a.

Porosity of oceanic crustal layers with proximity to the trench
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a, showing significant subvertical conductive channels below fault
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 Data sensitivity good to 6-8 km s
depths; Resolution begins to fade
around 3.5 km below seatloor
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« Mean porosity is conserved °
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