

The Himalayan Seismogenic Zone and Some Outstanding Questions

Jean-Philippe Avouac California Institute of Technology

Interseismic Coupling-Slip rate on MHT

S42-2832

(Stevens and Avouac, GRL, 2015)

The moment deficit accumulates in the interseismic period at a rate of **18 x10¹⁹** Nm/yr.

35 r

30

Horizontal Shortening Rate, mm/yr c c c c c c c c

5

72

(Stevens and Avouac, GRL, 2015)

The Mw 7.8 Gorkha Earthquake

More, larger EQs to come? How big when?

- The MHT is similar to a subduction Megathrust.
- Most of the questions asked about subduction Megathrust apply to the MHT.
- Main difference is long term build up and erosion of the high topography
- The Himalayan Seismogenic Zone is ultimately exhumed and accessible to geologist (P,T, deformation mechanism, paleopiezometry,...)

Some intriguing observations

- Origin of high frequency waves during he Gorkha Earthquake
- Possible segmentation despite little along-strike variation of ISC.
- Correlation of topo with interseismic uplift and seismicity
- Correlation of mid-crustal ramp with ISC and seismicity
- Sensitivity of Himalayan seismicity to the Monsoon cycle.

Origin of high frequency waves during he Gorkha Earthquake

(Avouac et al., NGEO, 2015)

(Galetzka et al. ,Science, 2015)

Possible segmentation despite little alongstrike variation of ISC

Estimated rupture areas of major earthquakes in the Himalaya since 1700 (e.g., Ambraseys and Bilham, 2000; Hough et al, 2005).

Correlation of topo with seismicity

Correlation of topo with interseismic uplift and seismicity

- Origin of the steep front of the HH? (out-of-sequence thrusting or ramp+ duplex?)
- Why is the effective friction on the MHT so low (<0.1) (dynamic weakening? fluid pressure?)

(Pandey et al, 1995)

• Does the mid-crustal ramp really exist?

Correlation between structure, eletrical resistivity and seismicity

Avouac (2003), based on Lemmonnier et al (GRL, 1999) and Cattin and Avouac, (2000)

- Origin of low resistivity? (metamorphic fluids?)
- Suggests interplay between fluid flow and seismicity
- Relation to ramp?

When the Monsoon Rocks the Himalaya

Sensitivity of Himalayan seismicity to the Monsoon cycle

Some outstanding questions

- How big and how frequent is the largest earthquake in the Himalaya?
- What factors might control the location and extent of seismic ruptures? (lateral segmentation?)
- Geometry of the MHT?
- How is the steep front of the High Himlaya maintained?
- What fraction of surface geodetic strain is really elastic?
- What controls downdip variations of slip mode.
- Why is Himalayan seismicity so sensitive to small seasonal stress variations?
- Why is seismicity and ISC so well correlated with topography?
- Why is effective friction on MHT so low?

My wish list

- Active seismic imaging
- New MT profiles
- More/better constrained geological slip rates from geomorphology and fold modeling.
- Accelerometric network to complement the
- Better seismological monitoring (e.g., temporal variation of Vp/Vs from seismic noise tomography?

Geometry of the MHT

(Elliott et al., NGEO, 2015)

Topography of the higher Himalaya is maintained by a combination of ramp overthrusting and underplating (no significant internal shortening of the wedge).

Q1: How big

Estimated rupture areas of major earthquakes in the Himalaya since 1700 (e.g., Ambraseys and Bilham, 2000; Hough et al, 2005).

S42-2821&S42-2822

(Elliott et al., NGEO, 2015)

