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Shallow magma-lithosphere interaction

Strain accomodation/localization, rift segmentation 
    (e.g., Muirhead et al., G3,2015; Corti et al., Tectonophysics 2002; Ebinger and Casey, Geology 2001;)

Dikes, faults and stress
   (e.g, Hamling et al., Nature Geo., 2010; Nobile et al., GRL 2012; Bedard, GSA Bulletin, 2012)
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Melt: where does it go?

compaction pressure

dynamic pressure (matrix shear, stokes)

surface tension

porosity

melt-buoyancy

fluid shear viscosity

Fluid velocity:

permeability (n between 2,3... 2.6 Miller et al., EPSL 2014)

pressure gradients
driving segregation



Lithosphere Thickness: Melt Focusing & Decompaction Channels
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Inherited heterogeneity and shear zones: pathways for melt?

Grain size and surface tension:
  smaller grains = more grains in a given volume
  1. higher porosity 
  2. higher surface area for reactions 
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Dike transport: intrusional heating
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Dike transport: intrusional heating
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Dike propagation from melt accumulation zone
at low (<0.25) melt fraction
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Basal heating (Havlin et al., in prep.)
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Soustelle et al., J. Petrology, 2009

Deformation and melt transport in the lithosphere

A preserved LAB 
in the Ronda Massif

Preserved lithosphere

Partially molten 

formed during emplacement

reactive melt percolation
(refertillization rxn's)

large thermal gradient

melt infiltration and
deformation coupled
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Deformation and melt transport in the lithosphere
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Deformation and melt transport in the lithosphere

CPX vein in gt-hzb.
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Geophysics and the search for melt...

Wolbern et al., G3, 2012



Geophysics and the search for melt...

Accardo et al, in prep. 

Visit Natalie's poster T51G-3000, Friday 10am: Rayleigh-wave 
imaging of upper-mantle shear velocities beneath the Malawi Rift; Preliminary 
results from the SEGMeNT experiment

Wolbern et al., G3, 2012

Melt in Afar/MER: 
Knox et al., GRL, 1998
Keranen et al., Geology, 2004
Bastow et al., G3, 2010 
Hammond et al., G3, 2011, 2014
Rooney et al., Tectonics, 2014
Korostelev et al., GRL, 2015



Geophysics and the search for melt...

Accardo et al, in prep. 

Visit Natalie's poster T51G-3000, Friday 10am: Rayleigh-wave 
imaging of upper-mantle shear velocities beneath the Malawi Rift; Preliminary 
results from the SEGMeNT experiment

Ethiopia/Afar

Malawi

Wolbern et al., G3, 2012
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Geophysics and the search for melt...

.... also anisotropy(CPO, SPO)

Accardo et al, in prep. 

Visit Natalie's poster T51G-3000, Friday 10am: Rayleigh-wave 
imaging of upper-mantle shear velocities beneath the Malawi Rift; Preliminary 
results from the SEGMeNT experiment

Wolbern et al., G3, 2012 Jakovlev et al., G3, 2013
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Quantitative comparisons:
Absolute Vs
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Havlin and Parmentier, GRL, 2014
Bellis and Holtzman, JGR, 2014
Olugboji et al., G3, 2013
Goes et al., JGR, 2012
Hieronymus and Goes, GJI, 2010

Elastic + anelastic effects:
Jackson and Faul, 2010; Jackson et al., 2006,2007
Karato, 2012; Aizawa et al., 2008
McCarthy and Takei, 2011; McCarthy aet al., 2011
Gribb and Cooper, JGR, 1998; Sundberg and Cooper, 2010
Holtzman, in review, 2015
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Summary

Melt transport and inherited lithosphere structure

Interaction between melt transport & lithosphere 
Intrusional heating: localizes deformation via thermal weakening
      rates of basal erosion comparable to whole-lithosphere

thermal-chemical modification: 
      transport of volatiles, incompatible elements
      reactive flow
      melting of pre-existing fusible heterogeneity

initial lithosphere thickness: lateral melt transport                                                
                        channelization along the LAB
                        focusing in thick lithosphere
shear zones:
                        preferential pathways for melt infiltration?

(d)

x [km]

z 
[k

m
]

0 20 40 60 80 100

40

60

80

100

120

140

z 
[k

m
]

0
20
40
60
80

100
120

x [km]0 50 100 150

Former 
Lithosphere

1500

Gt free

Gt bearing

0.110 0.120 0.130 0.140

1400

1300

1200

1100

1000

100

150

900
3.0 2.0 1.0 0 Age (Ga)

Depth
(km)

100 km
+ 4%

0

- 4%

200 km

300 km

400 km

Tanzania craton Eastern Rift

Labait volcano

? P

C

200 km

1200

1000

800

00.511.5

Mylonites Spinel-tectonites Co
ar

se
-g

ra
nu

lar
pe

rid
ot

ite
s

)C°(T)C°(T

Distance from the melting front (km)

2

3

(a) 5 mm 5 mm 5 mm

Geophysical Observations
increasingly compelling observations...

ambiguity remains (but there is progress!)

Thank you!
(missed some references? want to chat about
 melt infiltration? chavlin@ldeo.columbia.edu) 


