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Subduction Cycles — the Incoming Plate
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Subduction Input Water Budget

Bound water budget in 108 Tg/Myr
(van Keken et al., 2011)
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Hacker [2008]  \Water subducted beyond 100 km depth is highly
dependent on unknown mantle hydration



How to hydrate the mantle: Mid ocean ridge
processes?

“History of the Ocean Basins”
Hess (1962)
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Serpentinization: Megamullion
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e Serpentinization limited to tectonic features like “Megamullions”

and transform faults

* Oceanic upper mantle is dry due to melt extraction at the MOR
e Seismic studies show high velocities (~ 8.1 km/s), so little serpenization
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How to hydrate the mantle: bend faulting?

1650

Distance (km)
L7000

1750 1.800

» Normal faults penetrate the mantle when
the plate bends at trenches

* Modeling suggests that pressure gradients
from the bending stresses will drive fluids
downward

|« Ocean water will react with fresh mantle
peridotite to produce serpentine minerals
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« Water will be transported away from faults
into the surrounding rock by existing
porosity and cracks

2-D thermomechanical map
by Faccenda et al. [2009]




Potential Importance of Incoming Plate Faulting

Mumber of Earthquakes
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Incoming plate normal faulting earthquakes are numerous in all subduction zones
They are concentrated in the upper 10 km of the subducting mantle

2 wt % water in the upper 5 km and none below multiplies global input by factor of 2
3 % water in the upper 5 km & 1% water 5-15 km multiplies global input by factor of 4

Emry & Wiens [2015]



Velocity (km s°1)

Seismic Detection of Mantle
Serpentinite

V/V, ratio

P and S velocity
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Christensen [2004]

Volume percent serpentine

Serpentinization drastically reduces seismic velocity and raises V /V
All three serpentine minerals contain 13 wt % water
Lizardite/Chrysotile reduces velocity much more than Antigorite
Water can be calculated from w(%) = -0.31 (AV, %)



Upper Mantle

Serpentinization- Seismic section of the subducting mantle

_ parallel to the trench
Central America Nicaragua

s21

Costa Rica

s07

=

w

Sub-Moho seismic velocity in
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Low velocities show strong serpentinization of the Nicaragua mantle
Serpentinization is bounded by the maximum depth of extensional earthquakes
Estimate 3-4 wt % water in the upper 5 km of the subducting mantle
Serpeninization is stronger in Nicaragua, where there is extensive faulting

van Avendonk et al. [2011]



Velocity changes with bending

Location of Lines Velocity difference between lines
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lvandic et al. [2010] « This study shows that mantle velocities are reduced
by up to 600 m/s between outer rise and trench
« The remaining question is whether all the velocity
reduction results from serpentinization or is some due
to water-filled cracks?
» Depth extent not well constrained



Electromagentic imaging of high porosity
channels

Depth (km)
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Key et al. [2012]

e Controlled Source EM images low resistivity regions in
crust and upper 5 km of mantle associated with plate

bending
* Low resistivity indicates high water porosity along faults

extending into the mantle
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Another example: Tonga
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Contreras-Reyes et al. [2011]

» Active source seismic transect of Tonga trench

e Shows low uppermost mantle Vp of 7.3 km/s

» Consistent with 30% mantle serpentinization, or 3-4% water

* Low mantle velocities near the trench also found in Alaska, Chile, Kuriles



Plate-bending faults and serpentinization of the
Mariana incoming plate

Finite Difference Flexure Models
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» Tensional earthquakes occur down to
the upper 15 km of the mantle
Do tensional earthquake depths control
the depth of mantle
serpentinization?
» Does depth of faulting cause along
strike changes in subducted water?

Emry et al., [2014]
Depths and mechanisms from waveform inversion



2012-2013 Mariana Trench Experiment

Investigate slab and forearc serpentinization

R/V Langseth
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Preliminary Results from the Mariana Trench

Earthquake Locations V¢ Structure from Ambient Noise
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* Incoming plate earthquakes in upper 25 km
_ « Concentrated within 30 km of the trench
_ « Ambient noise correlation should allow deeper
I | resolution and provide V, for V /V, ratio
‘ » Vg structure shows slow velocities (4.0-4.1 km/s)
I I I I I up to 15 km below subducting moho
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From work by Melody Eimer and Hope Jasperson



Temporal variation in faulting depth?

Incoming plate faulting triggered by
2011 Tohoku M,, 9.0 event
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Depths of Extensional events from OBSs
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Maximum depth of extensional earthquakes
prior to the 2011 event was ~ 20 km

Extensional events are now found to ~ 40 km depth

The 2011 event increased tensional stresses and
deepened the neutral plane

Which depth limits possible serpentinization?

Is there more hydration at “coupled” trenches?

Lefeldt et al ]12012] suggested serpentinization is
limited by depth of extensional microearthquakes
and not larger events
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Along-strike variation in water input?
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Contrasting segments of the Alaska trench

Semidi segment is locked, Shumagin
segment is slipping

Semidi segment has megathrust earthquakes;
Shumagin may have no large events

Seafloor fabric is nearly parallel to the trench
in Shumagin, but highly oblique in Semidi

Much more incoming plate, thrust zone, and
intermediate depth seismicity in Shumagin



Contrast between adjacent segments
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* Much larger velocity reduction (and thus Serpentinization) observed
In Shumagin, consistent with more faulting
« Water content of the slab is highly variable along strike
* No apparent connection with megathrust activity; faulting and fabric are key?
 May have great effects on deeper arc and slab processes



Conclusions

The amount of water subd
due to the lack of const
mantle.

The oceanic mantle is likely serpentinized at the plate bendmg -ff
region and trench (not “outer rise”). Different estlmates 1 va'rx
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the amount of subducted water by factors of 3. SRV e

Seismic studies show low mantle seismic velocmes at several ,::‘
trenches, with corresponding estimates of 20-30% =
serpentinization and 3-4 wt % bound water.

Key questions include how much velocity reduction comes from
water filled cracks, as well as the depth extent of the
serpentinization

Serpentinization seems highly variable along strike and may be
partially controlled by the incoming plate fabric
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