Slab melting beneath the southern **Cascade Arc driven by** dehydration of altered oceanic peridotite

Kristina Walowski,^{1,2}

Paul Wallace ¹, Michael Clynne ³, Ikuko Wada ⁴, Erik Hauri ⁵ Dan Rasmussen ⁶, Dominique Weis ⁷

¹University of Oregon, ²University of Edinburgh, ³US Geological Survey ⁴University of Minnesota, ⁵DTM, Carnegie Institution of Washington, ⁶Lamont Doherty Earth Observatory, ⁷University of British Columbia

Modeled Slab Top P-T Paths

Motivating Question: How does subduction of young, warm oceanic lithosphere beneath the Cascade arc affect <u>dehydration of the slab</u> and <u>melt</u> production in the mantle wedge?

Grove et al. (2012)

The Lassen Region

- Magmatism is related to oblique subduction of the Gorda microplate
- Lassen Region has an extensive cinder cone field, with across-arc geochemical variations related to subduction enrichment

Samples:

• Primitive (MgO > 7wt%) basaltic tephra from 7 cinder cones

Upper left: photo micrograph of a melt inclusion Above: NanoSIMS 50L, Carnegie Inst. of Washington

Methods

Above: SIMS 1280 at WHOI

Olivine-hosted melt inclusions:

δD and H₂O: NanoSIMS at the Carnegie Institute of Washington

B Isotopes: SIMS 1280 at Woods Hole Oceanographic Institution

H₂O and CO₂: FTIR at University of Oregon Major Elements: EPMA, University of Oregon Trace elements: LA-ICP-MS at Oregon State University

Bulk Tephra: Radiogenic Isotopes – University of British Columbia

H₂O and Trace Elements in Lassen Region Magmas

- Correlation of volatiles and LILEs indicates variable addition of a hydrous subduction component.
- Mixing calculations show that the subduction component accounts for 70-98% of the H₂O dissolved in Lassen region mafic magmas.

Walowski et al., (2015)

Hydrogen Isotopes

dehydrated slab (8% of slab water) $\delta D = -234\%$

- Shaw et al., (2008) show
 Mariana arc melt inclusions
 have δD values elevated with
 respect to MORB.
- Strong fractionation of D/H during slab dehydration forms a D-enriched hydrous slab component and a complimentary D-depleted residual slab.

Both figures from Shaw et al., (2008)

Hydrogen Isotopes

• Lassen melt inclusions are corrected for diffusive loss of hydrogen by methods of Bucholz et al., (2013).

 \bullet Measured and corrected δD values are isotopically lighter than those previously measured in the Marianas

Modeling H₂O release from the slab

The Model: Wada et al. (2012) Couple 2-D thermal models (Wada and Wang, 2009) with metamorphic phase equilibria using Perple_X (Connolly, 2009) to calculate H₂O flux from the slab.

Assumptions: • 2 km of mantle hydration • vertical fluid migration •Excludes sediment package

H₂O Release and Slab Surface T

• Thermo-mechanical model results for slab dehydration shows two fluid pulses

• Because slab surface temperatures are at or above the MORB + H_2O solidus, the upper oceanic crust is likely flux-melted by fluids rising from the slab interior.

D/H Fractionation Model Results

Shear Velocity Model for the Lassen Region

Sr Isotopes in Southern Cascade Magmas

- The subduction component beneath the southern Cascades is less radiogenic than the sub-arc mantle wedge
- Inconsistent with addition of seawater-derived Sr from altered oceanic crust

Sr Isotopes in Southern Cascade Magmas

- The subduction component beneath the southern Cascades is less radiogenic than the sub-arc mantle wedge
- Inconsistent with addition of seawater-derived Sr from altered oceanic crust

Sr Isotopes in Southern Cascade Magmas

- The radiogenic isotope composition of the Lassen region primitive magmas can be explained by 1-10% slab melt addition to the mantle wedge
- some variation might be related to a sediment melt component

Model Assumptions

• pMELTS (Ghiorso et al., 2002)

 bulk equilibrium melting of mantle peridotite with variable addition of hydrous slab melt

• variable T (900-1400 °C), constant P (1.5 GPa)

Compositions:

• MM3 peridotite composition (Baker and Stolper, 1994), which closely approximates various estimates of primitive upper mantle

• Dacitic melt with 8 wt% H_2O from basalt melting experiments of Klimm et al. (2008)

pMELTS Model Results

- Mantle melt fraction is dominantly controlled by H₂O concentrations
- Alkalis also have a small fluxing effect on peridotite melting

How do slab melts affect wedge peridotite melting?

Conclusions

Evidence for slab melting:

- Low δD values in southern Cascades reflect the waning dehydration of the slab interior (chlorite breakdown in subducted oceanic mantle).
- Because slab surface temperatures are at or above the MORB + H_2O solidus, the upper oceanic crust is likely flux-melted by fluids rising from the slab interior
- MORB-like Sr isotope compositions are consistent with a partial slab melt component in the most enriched magmas

pMELTS model results:

- H₂O controls mantle wedge melting regardless of whether it is introduced as a melt or aqueous fluid
- Major element compositions of S. Cascade magmas can be explained by small amounts of slab melt addition