2015 GeoPRISMS Theoretical and Experimental Institute on Subduction Cycles and Deformation

Slab Processes

Effects of 3-D Slab Geometry and Oblique Subduction on Mantle Wedge Flow and Thermal Structure:

Examples from NE Japan

Ikuko Wada

Department of Earth Sciences, University of Minnesota

Wada, I., J. He, A. Hasegawa, and J. Nakajima, Earth Planet. Sci. Lett., 426, 76–88, 2015

NE Japan

Slab geometry data from Kita et al. (2010), Nakajima and Hasegawa (2006), and Nakajima et al. (2009); compiled by F. Hirose

NE Japan

Slab geometry data from Kita et al. (2010), Nakajima and Hasegawa (2006), and Nakajima et al. (2009); compiled by F. Hirose

Three-Dimensional Steady-State Finite Element Model

Three-Dimensional Steady-State Finite Element Model

0.3°C/km adiabatic gradient

A total of ~2 million elements and ~16 million grid nodes in our final calculation

Model-Predicted Flow Directions at 80 km depth

- Inflow from N beneath Hokkaido
- Reduced inflow in the Hinge zone
- Inflow from W beneath Tohoku; little 3-D effect
- Outflow parallel to the subduction direction

Model-Predicted Flow Directions at 105 km depth

- Inflow from NNE beneath Hokkaido; variation in inflow direction with depth
- Little change in the outflow direction with depth

Nakajima et al. [2006]

Inflow Direction and Volcanic Cross-Chain Orientation

Model-Predicted Mantle Wedge Temperature at 60 and 80 km depths

Compared to Tohoku...

- 50–100°C cooler in Hokkaido due to oblique subduction and steeper dip
- 100–200°C cooler in the hinge zone due to subdued mantle inflow

Seismic Attenuation and S-wave Structures in the Mantle Wedge

Low-Velocity High-Attenuation Regions: Hot Fingers vs. Wet Fingers

Hot-Finger Model (Low-Velocity Zones = Hot Regions)

Wet-Finger Model (Low-Velocity Zones = Wet Regions)

Summary

- In Tohoku, a 2-D approximation is reasonable.
- In Hokkaido, oblique subduction results northerly inflow and west-northwestward outflow.
- In the hinge zone, the convergence of northerly inflow from Hokkaido and the westerly inflow from Tohoku discourages inflow from northwest.
- Compared to Tohoku, Hokkaido and the hinge zone are colder.
- Mantle inflow direction correlates well with the seismically fast direction and the orientation of volcanic cross-chains.
- A mechanism of volcanic clustering remains to be investigated.