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Lattice Preferred 
Orientation (LPO) 
describes the statistical 
alignment of the crystal 
lattices of individual grains 
in a polycrystalline rock.

 Deformation by dislocation 
creep produces LPO

 Flow typically orients 
seismically fast [100] axes 
parallel to direction of flow.
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Karato et al. 
(2008)
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φ = 0:  fast shear wave direction parallel to flow direction

φ ≠ 0: fast shear wave direction oblique to flow direction
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Complexity #1 – Varied Olivine Petrofabrics Complexity #2 – Pre-existing CPO
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Complexity #1 – Varied Olivine Petrofabrics Complexity #2 – Pre-existing CPO
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φ = 0:  fast shear wave direction parallel to flow direction

φ ≠ 0: fast shear wave direction oblique to flow direction
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Question #1: 
Does deformation history influence 
subsequent LPO evolution?

Question #2:
What are the conditions under which 
LPO will achieve steady state? 

Expected steady-state 
LPO based on triaxial 
experiments of Nicolas 
et al., 1973:
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Question #1: 

subsequent LPO evolution?

Question #2:

Expected steady-state 
LPO based on triaxial 

?

Question #1: 
Does deformation history influence 
subsequent LPO evolution?

LPO based on triaxial 
experiments of Nicolas 
et al., 1973:
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LPO Evolution in Three Experimental Configurations
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Seismic Anisotropy in Three Experimental Configurations

… and three reference samples:



Ψ = minimum 
angle between 
[100] and flow 
direction (X)

Boneh et al. (2015) G3

Modeling LPO evolution using D-REX

D-Rex model of Kaminski and Ribe calibrated 
against Boneh and Skemer (2014)

Initial LPO 
orientation



Seismic anisotropy is 
influenced by:

 Mineralogy
 Temperature
 Pressure
 Water concentration in NAMs
 Stress
 Partial melt
 Deformation history

Inferring kinematics of flow in a 
subduction setting requires 
consideration of the full spectrum of 
deformation conditions and history.



bonus slides



McKenzie (1979)





Becker et al. (2014)= good fit between surface wave anisotropy and LPO

= poor fit between surface wave anisotropy and LPO
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For horizontal shear and a 
vertically incident wave:

• Delay times depend strongly 
on the dip of the LPO.  

• Polarization direction does not 
vary significantly except for 
extremely steeply dipping 
structures (where magnitude of 
splitting is small).

Relative Delay Times for an 
Olivine Polycrystal
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For horizontal shear and a 
vertically incident wave:

• Delay times depend strongly 
on the dip of the LPO.  

• Polarization direction does not 
vary significantly except for 
extremely steeply dipping 
structures (where magnitude of 
splitting is small).

Deviation of Polarization 
Direction from [100] Axis 
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Issue #1: The Effects of Deformation History
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Observe seismic 
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Infer LPO
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