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Temperature is a primary control on key processes at subduction zones, such as slab metamor-
phism and dehydration, arc volcanism and the rupture width of megathrust earthquakes. The ther-
mal state is partially controlled by the three-dimensional (3D) flow pattern of the overlying mantle
wedge, which is driven by pressure gradients created by the downward motion of the slab, as well
as by along-strike changes in its geometry [Kneller and van Keken (2008), Bengston and van
Keken (2012), Wada et al., (2015), Rosas et al., (2015, submitted)]. The flow results in a tempera-
ture distribution that deviates from the more-classical 2D corner flow model.

For this study, we report the first three-dimensional (3D), finite-element thermal model of the
Mexican subduction zone. Evidence of along-strike flow in this region comes from seismic aniso-

Possible effect of hydrothermal circulation
along the Mexican trench

'

Two types of oceanic
boundary conditions:

1) GDH1: age variations along the

tropy studies, which revealed fast-direction axis for olivine that are not perpendicular to the trench. trench Temperature (°C)
A common interpretation for this flow is the presence of gaps within the Cocos plate that induce a 2) vent-GDH1: age variations + 0 200 600 963.7
mantle toroidal flow around the slab edges. However, given the geometry of the Cocos plate in this effect of hydrothermal circulation i ——

region (flat-slab section at a depth of 50 km in Central Mexico, and a slab that dips at 40-45° further
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purpose of this study is to investigate the 3D mantle wedge flow pattern, as driven by plate geo- 18  -105 0.65 0 crease k for aquifer in shallowest 30

metry variations, and to compare it with the observed seismic anisotropy pattern. Along-Strike Velocity, vx (cm/yr) km of the slab. in order to simulate Hydrothermal circulation significantly reduces
Flow characteristics: vigorous convective heat transport slab temperatures. The decrease can be as

previous studies, which show mantle flowing from steeply-dipping region to a shallow-
dipping region.
- With an isoviscous (104" Pa s) rheology, maximum along-strike flow component (vx) of

1.8 cm/yr. This represents 30% of the slab convergence rate (6 cm/yr).
S velocity for Layer 1 | S velocity for Layer 2 | _ F u t u re WO rk
| _- i Gulfof 1 T -8/ Flow (6cm / yr)

JuT. - Along-strike mantle flow throughout entire model domain. much as 100°C
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Subduction Zone of Mexico:

- Subduction of Cocos plate beneath
North American plate

- Flat-slab section in central Mexico
extends 250 km from trench

- Slab dips at 45-50° westward from
flat-slab section

- Age variation along the trench from
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- Slab metamorphism and dehydration: effect of hydrothermal circulation could alter the
depth of metamorphic reactions.
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- Surface heat flow: hydrothermal circulation is known to alter surface heat flux. This can

11-17 Myr | ) serve as a constraint on the real effect of hydrothermal circulation, and thus slab tempera
- Hydrothermal circulation (possibly) = . i res.
in subducting crustal aquifer
o I — - Megathrust seismogenic zone: between 100-150°C and 350-400°C.
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