The Seismogenic Zone

Jeffrey Freymueller, University of Alaska, Fairbanks
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Seismic, Aseismic

 Study of the
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A Simple “Earthquake Cycle” Model

 Based on the 1D spring-slider analogue model
e Two “modes”: interseismic and coseismic

 Between earthquakes (interseismic):
— Shallow fault is locked
— Deeper fault is creeping at long-term slip rate
— Stress builds up: elastic strain energy stored in crust

* During earthquake, shallow fault slips

— Stress on fault reduced

e Cycle repeats forever



How does Earth Deviate From Simple
Model?

Along-strike variations

— Extent of slip deficit varies along strike: why?
Slow slip events and transient slip

— The locked to creeping transition is dynamic
Postseismic deformation

— Afterslip (on the plate interface)

— Viscoelastic relaxation (in mantle wedge)

Common theme: slip along interface varies with
space and time — not just interseismic + coseismic
in cross section.



2011 Tohoku-oki Earthquake
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Comparison of Locked Zone to Slip
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e To first order, the
rupture area of the
earthquake is the same
as the interseismic
locked zone
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Along-Strike Variations are Nearly Ubiquitous
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Along-Strike Variations are Nearly Ubiquitous
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Q— What controls along-strike
variations in the extent of slip deficit?



Slow Slip and Downdip Transition

The downdip end of the seismogenic zone is
particularly dynamic.

Slow slip events of various sizes observed in
Cascadia, Alaska, Mexico, Japan, Costa Rica, ....
— Durations of weeks to a few years

Q- What is the relationship of slow slip to the
generation of tremor?

Q- How do variations in the slip rate affect
overall slip budget?



Relationship of Slow Slip and Tremor
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Long Term SSE vs. Short Term SSE
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Long Term SSE vs. Short Term SSE
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Progress in Modeling
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Significant Velocity Changes in 2004, 2010
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SSEs can be ~“Decadal Scale
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Postseismic Deformation

* Large and great earthquakes cause
postseismic deformation, mostly due to:

— Afterslip/focused shear on the plate interface
— Viscoelastic relaxation within mantle wedge

e But variable from earthquake to earthquake
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Key Outstanding Questions

 What controls the extent of seismogenic (unstable) and
aseismic (stable) slip, and why do these vary with space
and time?
— How well do interseismic locked patches correspond to
future earthquake rupture patches?

e Especially challenging given model resolution limits of inversion
problems

— Can we describe the slip budget for various segments of
the subduction zone?

e Can we develop mechanical models that include
realistic rheology and stress transfer between patches
of seismic, aseismic, transient, etc behavior?
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