MECHANICS OF THE HIKURANGI MEGATHRUST

Long-term strength inferred from wedge dynamics
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Figure 1: Oblique view of North Island with depth contours of
subducting Pacific Plate (blue dashed lines), convergence rates
at the Hikurangi Trench (red arrows), and locked (red) vs.
slipping interface. Black dashed line marks approximate location
of the change from locked to slipping behaviour.
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Reyes et al., 2010

e.g., Bell et al.,
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et al., 2014
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If the megathrust is overpressured and weak in the north, why are slopes so steep there?
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Fig. 1. Map of the North Island of New Zealand with tectonic and seismic features. Arrows represent plate convergence vectors and convergence velocities from Anderson and Webb
(1994). The dashed contour of 20 mmyyear slip deficit is taken from Wallace et al. (2004), and the area of strong interseismic coupling is between this contour and the deformation
front Shaded areas represent areas of slip in slow slip events, after McCaffrey etal. (2008). The star shows the location of the 1947 tsunami earthquakes offshore Gisbome (Doser and
‘Webb, 2003 ). Vertical cross-sections of accretionary wedge geometry offshore Gisborne, north of Hawke's Bay (both after Bell et al, 2010), and south of Hawke's Bay (after Barnes
etal, 2010) are drawn to the right of the map. Profiles A and B are representative for the range of wedge geometries seen north of Hawke's Bay, whereas C is typical of the imbricate
wedge developed in the southern, locked segment (Barnes et al, 2010), although C is located at the edge of the transition from the southern locked zone to the weakly coupled
northern segments.
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Restore and model evolution
of low taper in south —
determine decollement
strength?
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— Restoration by Francesca Ghisetti (MOVE 4D) of depth section
No vertical exaggeration

Decollement at R7

2mm/yr sedimentation on average

PTZ = protothrust zone (incipient activation next thrust, decollement)
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- Reconstruction of the wedge post deposition of the interval topped by R5 (2 Ma) and during sedimentation of the sequence R5-R4

Submarine erosion of the inner wedge? ~ Growing detachment folding controls depocentres
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Reconstruction of the wedge during late sedimentation of the sequence R4-R3
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Forward modelling (SULEC): how weak does basal detachment have to be to
correctly predict wedge deformation in the last 2 My?

« Start from 2 Ma restoration

« Constant sedimentation proportional to depth bsl (~ 2 mm/yr)
« Coulomb frictional yield strength, initial weak faults

* New faults develop when frictional strains > 20-50%

« Decollement friction modelled separately

« Transient fluid pressures calculated- fluid sources from porosity changes (where porosity

depends on effective stresses). Permeability starts low (10-1° m?) and increases with brittle
deformation — 3 orders of magnitude higher in faults and along the decollement.

Reconstruction of the wedge post deposition of the interval topped by R5 (2 Ma) and during sedimentation of the sequence R5-R4

Okm

Shortening of 6 mm/yr across this part of wedge (based on reconstructions
Sediment =dry.p = 0.6
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Requires dry
décollement
friction
coefficient <
0.15, with fluid
pressure ratio
between 0.4
and 0.6
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Permissible “effective” decollement friction coefficients to produce low taper are < 0.08

dry friction coefficient for decollement peff = 0.08
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Fluid overpressure ratio

Hydrostatic fluid pressure:
(dry coefficient ~ 0.15)

(clay friction coefficients from Saffer and Marone, 2003)

Near-lithostatic fluid
pressure: Byerlee friction
(dry coefficient = 0.68)
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Effect of seamount subduction:
- Increased taper
- harrow wedge
- Wedge is NOT critical: slope evolves as seamount passes through
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Effect of seamount subduction: line CM05-04
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Effect of seamount subduction: cf. line CM05-04

(4]

=
=<
<
L
o
@
()

—%
o

—%
wn

DarcyFlow Magnitude

0.000=+00 25811 5e-11 7.52-11 1.000-10
[ LU

I

" e Zone of enhanced brittle deformation (melange
formation?)

eg Dominguez et al., 1998; Wang and Bilek, 2011
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periodic

-0.46

“Virtual shear box experiments” of deforming melange:

Impose constant
velocity boundary

Matrix: phyllosilicate flow law (Kronenberg et al., 1990) condition on top

Clasts: quartz flow-law, friction coefficient = 0.6
Fluid pressure ratio A = 0.67 (moderate overpressure) el [ T e o
20 km overburden pressure added deform box over time

periodic

Geometry based on Fagereng and Sibson, 2010 (Chrystalls Beach Complex)
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No fluid cycling in these simple models (since ratio is prescribed)
Oscillations up to 30% occur as a result of force chains breaking and linking during finite

deformation of the melange
Oscillation timescale depends inversely on slip velocity, and/or on width of shear zone

Vtop = 1.5 m/yr (3 cm/week) Vtop = 1.5 cm/yr (half plate rate)
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Slip cycling+stress cycling, brittle/viscous
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Main points

Southern Hikurangi’'s outermost 100 km wedge has a weak
decollement

By adding a “seamount” the shallow southern taper can be turned
into the steep northern taper- meaning they could potentially have
similar megathrust strength away from the seamount

Disruption of a smooth, thin decollement by seamount subduction
may lead to melange tectonics. The faster the melange strains, the
faster force chains form and break, leading to stress cycling

The stress cycling timescale depends on strain-rate. Its amplitude
depends on relative strengths of blocks vs. matrix. This cycling
may also occur in melange permeabilities and fluid pressures
(though not modelled yet) iy
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