

Pierre Bouilhol

Valentina Magni Jeroen van Hunen Ben. Maunder

Accessing Slab processes through numerical models

Continents \leftarrow Subduction / Arcs \rightarrow Oceans

Geological RECORD: Essential But Snapshots

1100°C -----1350°C ------OCE3nic lithosphere OCE3nic lithosphere O Slab / Wedge processes

Geological RECORD: Essential But Snapshots

PTt paths Mechanisms of Fluid extraction Compositions Complexity of interface

Alpine Slab Debret et al. JMG 2013

oceanic lithosphere 1100°℃ 1350°C

Slab / Wedge processes

Experiments: Essential But Snapshots (and tiny...)

Phase stability Flaw laws Kd's / Fluid Compositions

Numerical MODELS: Essential Incomplete

→ As too complex otherwise → Tackling problems 1 by 1

Fluid Flow Re-hydration / melting patterns

<u>1100°C</u> 1350°C oceanic lithosphere

Numerical MODELS: Essential Incomplete

 \rightarrow As too complex otherwise \rightarrow Tackling problems 1 by 1

> Rheology Slab behaviour Fate of solid fluxes

a

800

1200

oceanic lithosphere

<u>1100°C</u> 1350°C

Gerya & Yuen 2003

32.8 Myr

Numerical MODELS: Essential Incomplete

 \rightarrow As too complex otherwise

 \rightarrow Tackling problems 1 by 1

Thermodynamics → Petrology H2O flux Melting potential

<u>1100°⊆</u> 1350°C oceanic lithosphere

Numerical MODELS: Essential Incomplete

oceanic lithosphere

→ As too complex otherwise → Tackling problems 1 by 1

Melt extraction ? Primitive compositions ?

1100°℃ 1350°℃

Application to Hot Subduction

Hot subduction:

 \rightarrow Atypical signature of arc melts (so called "Adakitic")

→ Attributed to Slab melting (mafic crust) as a popular interpretation but really means Grt involved...

Hot Subduction = slab melting?

Dehydration melting ? Saturated melting ?

Need to be able to track dehydration vs melting In a consistent way

Thermal convection finite element model (Citcom)

integrated with

Thermodynamic database (Perple_X package)

Passive tracers that move with the velocity field. At each timestep: Assemblage is recalculated f(P-T-X) X being single or multi-component !

Bouilhol, Magni et al. *EPSL 2015* Magni, Bouilhol et al. *G3 2014*

Thermal convection finite element model (Citcom)

integrated with

Thermodynamic database (Perple_X package)

Passive tracers that move with the velocity field. At each timestep: Assemblage is recalculated f(P-T-X) X for now is H2O

Thermal convection finite element model (Citcom)

integrated with

Thermodynamic database (Perple_X package)

Passive tracers that move with the velocity field. At each timestep: Assemblage is recalculated f(P-T-X) X for now is H2O

Thermal convection finite element model (Citcom)

integrated with

Thermodynamic database (Perple_X package)

Passive tracers that move with the velocity field. At each timestep: Assemblage is recalculated f(P-T-X) X for now is H2O

Allows to model Dehydration & Re-hydration reactions → Melting conditions Reactions / Compositions

X2

X1

 $E-F + H_{2O} = E2-F + H_{2O}$

Thermal convection finite element model (Citcom)

integrated with

Thermodynamic database (Perple_X package)

Passive tracers that move with the velocity field. At each timestep: Assemblage is recalculated f(P-T-X).

Allows to model Dehydration & Re-hydration reactions → Melting conditions Reactions / Compositions

dry DMM

CRUST: Water vs melting

A petrological subduction zone model

Bouilhol et al. EPSL 2015

At Depth:

Crust dehydration Slab mantle dehydration

Supercrit. Liq. Fate (?)

Dry Eclogite (Cpx+Grt) + H2O Law-out

Ph-A \rightarrow DHMS

500

600

700

800

400

100

200

300

T (C)

1000

900

Parametric study: What controls dehydration patterns?

Overriding plate : Oceanic Age : 80-5Ma Velocity: 10 – 2.5 cm/yr Mantle temperature: 1550 - 1350 DMM H2O% f(age)

→Fast = shallow dehydration but also deeper release

60

70

80

→VELOCITY IS KEY FOR MANTLE melting potential

 $W = 1.06v_s + 0.14a - 0.023T_m + 17$

Some conclusions from these models:

Plate velocity controls slab top temperature
Controls devolatilization and the location of melting
Important parameter for recycling. W=1.06v_s+0.14a-0.023T_m+17

Dehydration achieved before the solidus is reached Important mantle wedge melting at shallow depth

Important mantle wedge melting at shallow depth Crust melting through water advection only $Cpx + Grt + H2O \pm q/coe \rightarrow Melt$

Hot subduction

Young Slab = Hot subduction = Early dehydration

Early dehydration = Different mantle melts Fate of Crustal melts ? Pyroxenites ??? Overriding lithosphere control (HP fractionation / re-melting) Some conclusions from these models:

Plate velocity controls slab temperature \rightarrow Controls devolatilization and the location of melting \rightarrow Important parameter for recycling. $W=1.06v_s+0.14a-0.023T_m+17$ The amount of H2O subducted is equally important as the temperature architecture of the system Slab melting is feasible for young slabs Only if enough water (is there enough ?) \rightarrow But Amph-peridotite \pm H2O melting would dominate Implication for making the C-Crust / Early earth SZ

Next steps:

Need Slab dynamics

10.54 Myrs Temperature / ° C

Temperature Profile

Next steps:

Need Slab dynamics

B. Maunder PhD: Testing mafic crust delamination. For now: $f(\sigma / T)$ soon f([H2O/Melt])

Numerical MODELS: Essential Complex & Complete ?

Slab / Wedge

processes

YES Getting there By bringing in all the necessary ingredients (Rheology, petrology, fluid low ...)

Next steps :

 Need Fluid / Melt dependent rheology WITH Melt extraction
Need a proper H2O Mantle melt model (now OK for crust/ NOT great for H2O mantle)

Melt model + Melt/Fluid dynamics → accessing primary melt composition / reaction throughout the wedge, until it reach the crust, and feed back mechanism on the dynamic of the system...

Bouilhol et al. 2011