Seismic anisotropy beneath the Juan de Fuca plate system:

Evidence for hetrogeneous mantle flow

M. Bodmer ', D.R. Toomey ', E. E. Hooft ', J. Nabelek ?, J. Braunmiller
mbodmer@uoregon.edu 1 University of Oregon, 2 Oregon State University, 3 University of South Florida

Data & Methods
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Discussion & Interpretation
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. The Juan de Fuca plate interior The Blanco Transform
’ = Frozen anisotropy in the lithosphere from corner flow at the JdF ridge. Alignment = Lithospheric deformation. 130° 129° 108" 127"
42°N — with the spreading direction is not observe. Splitting times ~1s require a layer too thick to be Strong agreement near the trans- ' ' ' '
o constrained by the young lithosphere. Possible to explain appernt splitting with two layers. form with relative plate motion.
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OBS recorded average of 4 usable measurements. lithospheric contribution or a deep tending near the surface [13]. Re- (13] Braunmiller & Nablek. 2008

secondary flow. A rotated secondary
flow may be consistent with recent

Only 14 stations recording a single measurement.
Backazimuthal distribution of events (pictured bottom right).

quires a low viscosity mantle for
such restricted flow.
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130°W 128°W 126" tions of skew at the Endeavour seg- Numerlcal ow modeling and consideration of finite frequency effects will help con-
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(a) Uncorrected and (b)Corrected Waveforms, (c) Particle Motion,
(d) Comparison of Methods, (e) Energy Maps, and (f) Final Stack
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AT The Mendocino triple junction and southern Gorda
IS Method for OBS Quality control x x Lithospheric signal due to corner flow or crustal deformation. Anisotropy aligned with
A B Cl Years 1 Events ‘ . Toroidal flow. One popular model to describe asthenospheric flow near MTJ is to- the spreading direction are consistent with our results. However, dt =1.2 s and 4% anisotropy re-
T d We used SplitLab [2] to measure splitting B Check that SC gives hyperbolic shape and roidal flow around the slab edge due to rollback [8] & [9]. We reject this model based quires a 140 km layer, which is much larger than can be expected from corner flow. Faulting due to
% parameters. RC appears reasonable. on the spacial pattern of splits and the absence of trench parallel orientations. deformation is all NE-SW trending.
4, Due to high noise traditional methods Discard dt valuesf below 0.5 s (unrealistic at . | | | V
oo must be evaluated and modified. low frequencies) or above 3 s = Ambient mantle flow. Ambient flow is W-E. Deep secondary flow may contribute Broad shear zone due to Pacific/JdF relative motion (pictured bottom left). Fast-axis
0, (possible cycle skipping). to skew in the plate interior. orientations correlate well with Pacific/JdF relative motion. The Pacific plate induces a N-S com-
30 Filtering EV'and SC are compared. x pression in the southern Gorda and facilitates significant deformation. We suggest that the Gorda
0 . Strain induced by APM. Measurements in the southern Gorda do not correlate is a shear zone that accommodates strain induced by relative motion. The upper mantle undergoes
0 , o Stacking with APM. Further, the coherent signal is not confined to the Gorda plate. reorganization in conjunction with crustal deformation in this diffuse plate boundary.
0 Filter set at 0.03-0.1 Hz initially.
D R T T I e Filter is varied !o.etween 0.02-0.15 Hz. | Stacking procedure of Wolfe & Silver [5]. N S
0 = - Check for stability and allow as much high Lowers error estimate and remove false
frequency data in as possible [3]. measurements.
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We use this method on 5 land stations.

Verify that reliable splits can be made at
these frequencies.

TA stations show excellent agreement with
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