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Early Models of Plate Bending
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. Caldwell et al., EPSL, 1978 t

 Bathymetry matches that of a bending plate.

* Profile can be fit by plates with different rheology
and/or different boundary forces.




Subducting Plate Rheology
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Outer-rise Faults

Found at all trenches

Can dip towards & away from
trench (30-60 degrees)

New & reactivated faults

Faults grow in length & throw
toward the trench.

Spacing & length varies.

Masson, Marine Geophys. Res., 1991; _,
Massel, PhD., 2002 §




Outer-rise Faulting: Tonga

e Faults form sub-parallel
to trench

27.5

e Abyssal-hill fabric is
sub-perpendicular (Billen
& Stock, 2001)

e Fault scarps are larger
near the trench
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Outer-rise Faulting: Middle America

* Seafloor fabricis
parallel to trench |

e Quter-rise faults
reactivate
seafloor fabric

e How deep do .
these faults go? -
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Outer-rise Faulting: Depth of Faults
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— Bright reflectors line-up with faults observed at the seafloor

— Some reflectors clearly go deeper than the crust-mantle
boundary (CMB).



Overview of the Incoming Subducting Plate
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Using Outer-rise Faulting
to Learn About Incoming Plate Deformation

Observations & Analytic Models

Numerical Simulations




1. Frictional Strength of Outer-rise Faults

A New Faults (0 =0, oy, >25°) B Reactivated Faults (0, = 0y, < 25°)
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e Observation = Transition angle:

— New faults form when seafloor fabric is mis-aligned by
more than 25 degrees from trench-parallel.




Transition angle constrains fault strength

A not reactivated
@ reactivated
® new faults

Shear Stress (a,)

4115 o

4100 MNormal Stress
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Billen et al., Geology, 2007

3D analysis of stress-state & transition angle = 25°

e Reactivated faults are only 30% weaker (0.6) than
the crust in general (0.85)

e No pre-existing weakening, nor is it required



Faulting Characteristics: fit by Exponental law
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* Applied same analysis to Middle America and the Kuriles



What does exponental fit tell us?

* Analog models for extension

— transition from power-law to exponential-law as faults grow to
fill layer thickness.

— Power-law is indicative of simultaneous formation of faults and
elastic interaction. (Ackerman et al., J. Str. Geo., 2001)

Supak et al., EPSL, 2006
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 Analog models for flexing of a plate:

— exponential-law dependence for fault spacing: faults are anti-
clustered.

— neither law is a good fit for length or height.
— Sequential formation of faults at moving bending axis.



What does exponential fit tell us?

Corcnons sy _|_ieet___ncin__

Plate Age
* Sub. Velocity no + +
i% Shallow Dip -(?) + +
New vs. React -(?) + +
Cont vs. Ocean -(?) + +

Saunders, Billen, Naliboff, unpublished

* Positive correlation between plate age & fault spacing
— but fault spacing has a small variation (2.0 — 2.9 km).

Length & height: positive correlation with all but age.
Three locations is not sufficient to determine 15t order factor

* Tonga: large difference in sub. velocity & slab dip
— BOTH should lead to higher strain-rates in the bending region.



3. Weakening of the Subducting Plate

aoppd (b) Bathymelry Profiles
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* Use relationship between gravity & topography for an elastic plate to
determine effective plate strength along each profile.

 Compare strength along profiles at different distances.



Gravity/Topography measures plate strength

Seamount formed near ridge:

-t -2 thi k plat
grav-topo in/weak plate Seamount formed on old plate:

1 grav-topo = thick/strong plate

Plate weakened due to bending
grav-topo = weak/thin plate

Tension
Faults

Arredondo & Billen, PEPI, 2012



Rapid Weakening of the Subducting Plate
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Decrease in flexural rigidity of 3-5 orders of magnitude.
Decrease in elastic plate thickness from 50 km to < 5-10 km.

Reduction is evidence of non-elastic behavior
— Faulting & plastic yielding throughout the plate



Deformation Processes in the
Incoming Plate from Observations

| Next step?
Rheology Numerical Simulations
| v

- Use observations as
constraints

- Test physical
relationships between
observed deformation

\ 4
N | and plate strength




Hydration of the Plate due to Faulting
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Pressure gradients due to deformation pull water into the plate.
Fluid flux depends on many parameters including frictional
properties of the crust



Clear Dependence on Plate Age
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* Younger-to-older plates:
— Wider region of faulting
— Faults extend deeper
— Spacing of faults is roughly constant



< Increasing friction

Weak Dependence on Fault Friction
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 |ower friction leads to more faults

* but there’s more variation in a single model as a function
of time.



Strong Time-Dependence

*  Colors:

= Red is strong (10%° Pa-s).
.  Blue/purple is weak
(1018-10%° Pa-s).

Naliboff et al., G3, 2013

Logyy(n) Pas

e Quter rise fault characteristics vary as plate boundary evolves
e Width of faulting region
e Number of faults
e Fault spacing



Dependence on Plate Boundary Coupling ?
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PBSZ viscosity decreases by x 10

— changes stresses within the slab

- Faulting moves seaward.

—> Slab shape has also changed, but no clear correlation with
curvature.



Faulting Weakens Plate but Depends on PBSZ
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Measure reduction in 205 |
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e Coupled interface: 920 025 030 035 0.40
— 25 times weaker oupled Strain Weakening Magnitude
— Independent of frictional properties.

e Uncoupled interface:

— 75-200 times weaker
— More overall weakening, but less localized.

Trench Viscosity Reduction




Instantaneous 2D Tonga Model
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Work in Progress: Compare Fault Characteristics

S N
Log,,Viscosity (Pa s)
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o Effect of water (Tonga models are dry) = PBSZ viscosity
& faulting?

 Compare faulting characteristics (spacing, height,
direction) to observations.



Deformation Processes in the
Incoming Plate from Observations

Before Numerical Simulations

Rheology
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Deformation Processes in the Incoming Plate
from Observations & Numerical Simulations
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Better understand faulting

With Numerical Simulations
& plate weakening



Deformation Processes in the Incoming Plate
from Observations & Numerical Simulations
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With Numerical Simulations

Better understand faulting
& plate weakening

Weak dependence on rock
frictional properties.

PBSZ may be important?

These processes have
implications for slab
dynamics.



Deformation Processes in the Incoming Plate
from Observations & Numerical Simulations
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Conclusions

 Observations of outer-rise faulting provides insight
into deformation processes of the incoming plate.

* We are in the process of using numerical simulations
to more directly link observations to rock properties
& bending process.

e Strong time-dependence suggests important
feedback between forces & rheology.






Outer-rise Faults are Active
Faults

e Seismicity
— M >5.0, 1988-2013
— Some are M > 8.0 (tsunami-genic)

e Large events cut through much
of the plate (> 30 km)

e Exhibit some relation to mega-
thrust events (preceding or
following)

— May reflect stress transfer




Insights from Analogue Experiments

e Stretching: faults form simultaneously and are distributed
throughout the stretching region.

— at low strain, elastic interaction, unconstrained growth of faults,
leads to a power-law N(s) for fault length and spacing.

— As strain increases, fault growth is constrained by the layer
thickness and elastic interaction becomes less important, leads to
a exponential-law N(s) ) for fault length and spacing.

— Transition occurs at higher strain for thicker layers. Ackerman et
al., 2001

e Flexing differs because faults form sequentially along the
bending axis, they therefore move from a high strain-rate
region to a lower strain-rate region as they accumulate strain.

— N(s) is less clear for length (neither model fits), but for spacing it is
better fit by an exponential-law. Spacing is anti-clustered.

— Sequential growth inhibits elastic interactions between faults.

— Length-scale is not clearly related to plate thickness. (Supak et al.,
2006)



2. Faulting Characteristics: Tonga
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2. Faulting Characteristics: Costa Rica
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2. Faulting Characteristics: Costa-Rica

Fault Spacing vs. Distance to Trench Axis
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Conclusions: from Observations

 Rapid reduction in plate strength occurs between the
outer rise and the trench

e Quter rise faults form in “normal” oceanic crust with
no significant pre-existing reduction in frictional
properties.

e Size-frequency characteristic of outer rise faults
follow an exponential law;
— physical interpretation of length-scale is not clear.

— may be related to width of high strain-rate zone at bending
axis.



Conclusions: From Simulations

e Formation of outer-rise faults arises from a cohesion/friction-
loss rheology

e Pressure gradients within outer rise faults pull sea-water into
the subducting plate. (Faccenda et al., 2009).

e Region of faulting is broader/deeper for older subducting
plate age.

e More friction-loss (lower min) within subducting plate leads
to fewer faults with large fault offsets, and vice versa.

e Other rheologic variations have little or no affect on fault
characteristics.

e Fault Characteristics are time-dependent: changes in BC (slab
pull, horizontal extension/compression).



2. Faulting Characteristics

e g Amercia| Westemkuries | Tonga

Age (my) 24 -28 120-128 105-115
Overriding Plate Continental Continental Oceanic
New/Reactivated Reactivated Reactivated New
Sub. Velocity (mm/y) 58 39 113
Shallow Dip (mean) 29-32 24-27 35-38
Characteristic Height (m) 93.6 43.7 T
Characteristic Length (km) 9.2 6.1 16.1
—
Characteristic Spacing (km) | 2.0 2.9 2.1

Saunders, Billen, Naliboff, unpublished

* Tonga has longest faults with largest offsets, but low
fault spacing.
* All regions have similar fault spacing.
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