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Why is understanding Subduction
Initiation (SI) important?

Establishes initial parameters for mature subduction
zones (esp. mantle wedge depletion)

In some cases associated with massive magmatic
outpourings (new type of LIP) and production of most
arc crust.

Produces forearc lithosphere — important for
understanding seismogenic zone

Origin of most ophiolites such as Oman, which provide
key models of oceanic lithosphere

llluminates forces controlling plate motions:
lithospheric strength and density vs. asthenospheric
convection



It’s 2011, >40 years after the plate tectonic
revolution, why don’t we understand how
subduction zones form?

1) It’s not a steady-state process
The present is only partly key to the past

2) Geodynamicists have been working without
much geologic insight

3) Amphibious problem

4) No single way to start a new subduction zone

5) 3D problem



Many Subduction Zones have formed in
Cenozoic — it must be pretty easy!
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Left: modern convergent margins color-coded for Sl age. Convergent margins which
began before the Cenozoic are blue. Right: Length of Cenozoic convergent margins versus
their age of initiation (Gurnis & Hall, 2004 G-cubed)



How To Start A Subduction Zone:
induced (ISI) vs. spontaneous (SSI)
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No Cenozoic examples of Passive margin ISI or SSI
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Is the Wilson Cycle a geomyth?

Wilson cycle

2. As spreading
continues an ocean
opens, passive
margin cools and
sediments

accumu late

1. A continent
rifts when it
breaks up
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thinning the oceanic plate

crust subducts,
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volcanic chain at
an active margin

4. Terraine
accretion-from the
5. As two 3 sedimentary wedge
continents A welds material to
collide orogeny the continent
thickens the
crust and
building
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How can we better understand
Induced Subduction Initiation?

 Focus on 3 Cenozoic examples:
— Solomon arc Polarity Reversal
— Puysegur subduction zone (New Zealand)

— South of India
e "To the curious incident of the dog in the night-time.”




Polar Reversal ISl in the Solomon-Ontong
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~12 Ma on the

south side of the
: Solomons.

OJP is about the size of the continental US, with 40 km thick crust



OJP-
Solomons
Collision
& Polarity
Reversal

Petterson et al., 1999

Eocene. Initiation of the
SW-directed subduction of the
Pacific Plate and formation of
the Vitiaz (Stage 1) Arc.

~25-20 Ma. OJP docks with the
trench. Lack of compression
implies initial docking is ‘soft.
Volcanic activity ceases possibly
dg% to steepening of SW-dipping
slab.

=20-15Ma. SW-dipping slab
breaks off in places. Continued
absence of any obvious Vitiaz
Arc-related volcanic rocks.

=12 Ma. Subduction flips to a NE
direction forming the  San
Cristobal/New  Britain  Trench
system. 6Ma sees the start of NE
directed South Solomons (Stage 2)
Arc Volcanism.

= 4-2 Ma. The formation of the
Malaita Anticlinorium and its
eventual emergence above
sealeve, 30% shortening on
Malaita indicates the formation of
the anticlinorium was the result of
a ‘hard docking' event, with
vertical stacking of horizontal
backthrust sheets on Malaita.
Subduction is shown as being to
the NE, the prominent direction
throughout the Solomon Islands
today.




Australia-
Pacific
transform
margin is the
best (only)
active example
of SI
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Puysegur Region
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Subduction has reached deep enough to
generate an arc volcano (Solander)

Gurnis et al. White Paper



What about the Biggest Collision of
them all? India-Asia

* India collided with Asia, destroying the intervening subduction zone.

e The Sherlock Holmes story "Silver Blaze" focuses on the disappearance of
a famous racehorse named Silver Blaze on the eve of an important race

and on the murder of its trainer. It hinges on the famed "curious incident
of the dog in the night-time":

— Detective: "Is there any other point to which you would wish to draw my
attention?"

— Holmes: "To the curious incident of the dog in the night-time.”
— Detective: "The dog did nothing in the night-time."
— Holmes: "That was the curious incident.”

Why didn’t the dog (a new
subduction zone) bark (form in the
Indian Ocean to the south of India)?




Deformation of oceanic
lithosphere in the central
Indian Ocean has been
occuring for a long time

Light shading shows position of
diffuse plate boundary separating
Capricorn, Indian, and Australian
plates (Royer & Gordon, 1997).
Darker shading shows extents of

long-wavelength folding at 3 times

(8.0-7.5 Ma, 5.0-4.0 Ma and 0.8
Ma).

But no sign of a new
subduction zone!
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Why no ISI south of India?

* |n spite of continued convergence of India and
Asia and 8 m.y. of deformation of the Indian

Ocean seafloor, no subduction zone has yet
formed.

* Oceanic lithosphere may be too strong to
break (cold, olivine-dominated rheology).

 Transference ISl is difficult; may have occurred
if fracture zones were oriented E-W instead of

N-S.



lzu-Bonin-Mariana Spontaneous Subduction
Initiation (SSI)

lithospheric weakness
A. (e.g., transform) oceanic crust
Lithospheric Mantle
Asthenosphere
B. Early proto-forearc spreading (FAB)
«——>

Upwelling fertile asthenosphere
melts due to decompression; -~
no interaction with

slab-derived fluid

C. Late proto-forearc spreading (VAB/BON)

Depleted mantle stagnates; melting
reflects fluxing by slab-derived fluid

localized magmatic arc

D. \

forearc ophiolite

’ J true subduction;
‘/ trench rollback slows

Modified after Metcalf and Shervais (2008)

True subduction induces
convective overturn of
asthenosphere
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Lower tholeiites (high Ti) are formed from
fertile mantle during (B); Upper lavas (low Ti)

are formed from depleted mantle during (C).

~7 m.y. to evolve into a mature
subduction zone (52-45 Ma)
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What about Spontaneous Subduction Initiation (SSI)? No
active examples.
Three-pronged approach needed

1) Field studies of Cenozoic examples

- Evidence is preserved in forearc crust
- Naked (intraoceanic) forearcs are best for study

- Expensive: need ships to dive and drill
2) Use ophiolites

- Cheap and easy to study but how to determine which
ophiolites form during subduction initiation (SI)?

- Use Ophiolite Rule to identify Sl ophiolites: First SI lavas are
tholeiitic with little subduction input but show more such
input with time

3) Geodynamic modeling

- Develop quantitative and realistic models to explain
observations from forearcs and ophiolites.
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How to Make an Island Arc via SS (IBM recipe)

1  Generate broad arc substrate during subduction initiation/arc infancy stage.

2. Locus of magmatism moves away from the trench (Tr) during transition to
true subduction and formation of mature arc.

3. Fix position of mature arc to allow crustal thickening, differentiation,
anatexis, and delamination.



Arcs, like people, grow fastest when they are young
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FeO/MgO (wt.%)

IBM forearc crust and most ophiolites have
similar magmatic evolution: Proceed from

MORB-like to arc-li
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What about SI for
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Began ~45 Ma

IS| or SSI?

Cascade forearc
crust = Siletzia



Thanks to Ray Wells
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Explanations

Snavely et al. 1968 - Oceanic Affinity

— Tholeiitic to alkalic submarine and subaerial flows

Morgan 1978 — Hotspot

— Proposed link to Yellowstone Hotspot

Duncan 1982 — Age-Progressive Volcanism

— Accreted ridge-centered hotspot

Wells et al. 1984 — Accreted Hotspot

- Transform-Ridge-Hotspot interaction

Thorkelson 1996 — Result of subducting ridge

— Slab window

From Pyle et al. 2009 GSA abstracts
Product of Subduction Initiation?



e Conclusions:
— Lots of work to do to understand Subduction
Initiation
— Different mechanisms are likely

— More work needed, but with better co-
ordination between geologists, geochemists,
geophysicists, and geodynamic modelers

— Focus site approach may work but “focus
problem” strategy should also be considered
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Fm

Crescent Fm
Olympic Mts.

Black Hills

Willapa Hills

Late Eocene

basalt
Grays River Basalt

Tillamook Velcanics

Cascade Head .
Yachats Basalt

Siletz R. Vol,

Trask River -~

Bald Mt.

Mary's Peak

Roseburg

100 km

Siletzia

Paleocene and Eocene CR basement
from V.l. To Roseburg consists of
oceanic tholeiite and alkalic basalt
(black).

Long considered allochthonous —
(Hamilton, 196%9; Macleod and Snavely,
1974; Duncan, 1982; Jones et al. 1983)

Olympic and Siletz terranes:

* Distinctive deep marine stratigraphy
and oceanic chemistry

* Fault bounded
* Ciritical onlap relations exposed
* subdivided based on rotation

Accreted island chain, oceanic
plateau, or marginal rift/slab window
magmatism?

Modified from Pyle et al., 2003




Depth (km)

Cascade Forearc = Siletzia
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E-W velocity model of Oregon forearc crust. Contour interval is
0.5 km/s. Open triangles = seismometers, filled triangles =
shots (Trehu et al. 1994).
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Siletzia has thick, high
velocity mafic crust.

Aeromagnetic survey and exploration wells
outline extent of Siletzia’s basalfic crust

600 x 200 km.
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Seismic profiles indicate crust 22-32 km thick in
OR, thinning to 20 km in WA, 16.5 km exposed

in Olympics, 10 km on V.I.

2,360,000 km? > 10x CRB vol. (170x10% km3).




Lavas are mostly basalt: Lower
tholeiites, upper alkalic

P. D. Snavely, Jr., N. S. MacLeod, and H. C. Wagner
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Fig. 4. Alkali-silica diagram for rocks of the Siletz River Volcanics. The Hawaiian
alkaline trend is from Muir and Tilley (1961), and the diagonal dashed line, which
represents the boundary between the Hawaiian tholeiitic and alkalic fields, is from
Macdonald and Katsura (1964).



|s Siletzia an Accreted Terrane?

55.00 Qv | b | b0 | «0 | » | o

“Yakutatia”? Moving hot spot
model (55 Ma)
with Kula-
Farallon ridge,
Yakutat Hot Spot
is just offshore,
on a spreading
ridge.

| (Gplates, Muller et al,
2010). Modified idea
of Duncan 1982




Tomographic evidence for two slabs
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Accreted Hotspot hypothesis Pros and Cons

 Few hotspots on Cenozoic E. Pacific seafloor
 Why hotspot right at trench? Yellowstone
plume?

 Sediments on top of Siletz River Volcanics
contain N. American detritus

 Paleomag indicates formation at same latitude
out 70° rotation

e |fitis accreted, requires Transference ISI to
generate present Cascadia subduction zone.

— Would be only such Cenozoic example




Resurrection plate hypothesis
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Resurrection plate pros and cons

PROS
Makes Siletzia part of North America

CONS
Little other evidence of Resurrection plate

No adakites (melts of hot, young slab) in
Siletzia volcanics



In Situ Tectonic Models
Siletzia

/g
upwelling %A
ere. =

asthenosph:
N

O\ e /gfw -
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Each model implies close proximity to
arc and/or fore-arc volcanism

Rifted Margin

Pyle et al. 2009 GSA abstract




Crustal Thickness
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Volume Estimate

Gravity and Magnetics

Area
~ 87,000 km?3

Crustal Thickness
30km—2.6 x 10° km?

20km —1.7 x 10° km?




LIP Comparison
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Washington - B.C. Oregon

Metchosin Fm. Crescent Fm. Siletz River Basalts Roseburg Basalts
@ L
Muller (1980) Glassley (1974) Snavely et al. (1968) this study
; v Lyttle & Clark (1975) ,
Timpa et al. (2005) Globerman (1980) this study

Babcock et al. (1992)
Harrison & Haileab (unpub)
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HIMU - aged high U/Pb source

Zindler & Hart 1986
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Plate — Hotspot Reconstruction

0 400km

fFi--

Resurrection
\\
——

53 Ma

Madsen et al.
Geosphere 2006; 2:11-34

Plume interacts with Klamath
Terrane

Plate motion drags plume
material north

Plume may feed a spreading
ridge

Crescent-Metchosin more
affected by rift environment

Siletz-Roseburg dominated by
plume environment



Summary

Fits a LIP Model e Plume Head?

— size & duration — maybe / maybe not
Multiple tectonic * Yellowstone Plume?
components — geochemically viable

— hotspot & rifting — track coincides
Multiple mantle

sources

— moderate HIMU to C + Needed Constraints:
— MORB? _ more geochemical data

(trace element & isotopic)
— more radiometric ages

(timing and duration)



