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Development
of a low-
viscosity
channel:

advection leads
to coherent layer
of hydrated NAM

LVC is defined by
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water-weakening
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Motivation:
*Potentially important dynamical implications for deep (> 200 km) introduction of fluids
*Source of chemical enrichments

*Water addition can effect locations of partial melting
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Using COMSOL Multiphysics® 3.4 in 2-D:
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Determining Dehydration Locations within the Slab

*Map P-T trajectories from model thermal result (assuming by 200 km
depth, lithospheric serpentinite is sole water source)
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*6 km of hydrated lithospheric serpentinite beneath 7 km of dehydrated AOC



Determining Dehydration Locations within the Slab
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*Changing slab age leads to a changing thermal structure and therefore a change in dehydration location
within the slab



Including Fluid Sources and Sinks into models

\'A <_aNAMVCNAM ) =R-u ;" V>
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R = (source + sink)

*Utilizing multiple COMSOL Multiphysics Applications

Determining Fluid Velocity and Trajectory

S Ap =2300kg- m’
uﬂuid = usolid +—,
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Water storage capacity

olivine, clinopyroxene
orthopyroxene, garnet

After Hirschmann et al. (2005), we estimate
the storage capacity of the upper mantle
based on:

* the storage capacity of olivine
*Partitioning of H,0 between olivine and
other mantle minerals
*Variation in modal mineralogy with depth
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|: ol+gt+cpx+10A=» ol+cen+gt+cpx+fluid
ll:wd+E+gt+cpx=>»wd+gt+cpx+fluid
lll:mpv+cpv+pc+D=> mpv+cpv+pc+luid
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IV:mpv+cpv+pc+D=>
mpv+cpv+pc+fluid
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Results: Free Water
(fluid velocity ~ 1011 m/s)

*Dehydration results in a near-slab-parallel fluid trajectory
*Fluids are transported with the solid flow field
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Results: Free Water
(fluid velocity ~ 10° m/s)

*Dehydration results in rapid, nearly vertical fluid migration
*Secondary dehydration occurs at the base of the transition zone, resulting in additional fluid
sources, similar to Davies and Stevenson (1992) concept
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Results: Held Water

*Fluid migrating up into the wedge is taken up by
nominally-anhydrous minerals, and then advected with
the solid flow field

Concentration of H,O in NAM (ppm) Concentration of H,O in NAM (ppm)

N R
1000 2000 3000 1000 2000 3000

50 Ma, 10 cm/yr 50 Ma, 10 cm/yr
high estimate LM solubility low estimate LM solubility

1000 2000 1000 2000
horizontal distance (km) horizontal distance (km)

*Upward percolation of fluid expelled from the slab as well as adjacent down-dragged mantle entering the lower mantle
act to hydrate the transition zone local to the subducting slab



Results: Held Water

*Fluid migrating up into the wedge is taken up by
nominally-anhydrous minerals, and then advected with

the solid flow field
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*Evaluate: high or low storage capacity estimate for water in lower mantle NAM



Results: Viscosity

*Water held in NAM may strongly influence the viscosity
structure-leading to overall changes in the flow structure
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Results: Viscosity

*Water held in NAM may strongly influence the viscosity
structure-leading to overall changes in the flow structure
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Results: Vertical velocity

*Enhanced upwelling is observed when compositional dependence in viscosity
and buoyancy is taken into consideration
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*High fluid velocities ~1000xsolid flow velocity
*Downwelling mantle flow field
*Low estimate for lower mantle water storage capacity




Conclusions

*We evaluated deep slab dehydration and the development
of a hydrated region, which changes geometry based on
subduction parameters, fluid velocity estimates, and lower
mantle water storage capacity estimates

*We evaluated the modification of the velocity field using a
compositional dependence within the viscosity formulation
and compositional buoyancy

*A “wet” transition zone may be initiated near a subduction
zone if lower estimates for water storage capacity in the
lower mantle and rapid fluid velocities are correct



Applications for GeoPRISMS:

*How does volatile release from the slab influence mantle
dynamics?

*How are volatiles and fluids stored, transferred, and
released through the subduction system?

*\What are the fluxes of volatiles delivered to the mantle
from the subducting slab?






Determining Dehydration Locations within the Slab
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Water storage capacity
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