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Outline

Does the physical state of the sub-arc mantle vary with time?

1. Long-term thermal evolution of the mantle wedge beneath arcs

2. Thermochemical evolution of sub-arc mantle due to melting at a
back-arc spreading center (“pre-conditioning”)

GeoPRISMS Relevance M

How are volatiles, fluids and melts stored, transferred and released
through the subduction system?

- What are the melting reactions and loci, and melt pathways from the mantle
wedge to the surface?
- ... how are fluids and melts focused to the volcanic front?

What are the physical and chemical conditions that control subduction
zone initiation and the development of mature arc systems?

- What controls the distribution of volcanoes in space and time?



Subduction Initiation
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Steady-State Thermal Models of Subduction

(a) T for olivine diffusion creep (b) T for olivine diffusion creep (c) T for olivine dislocation creep

van Keken et al. (2008)



Model Geometry and Boundary Conditions
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Temperature
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Difference in Sub-Arc Temperature (Transient — Steady State)
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Age of Subduction Zones

8
8

8

E
-
S
=
5
o
[ =
®
il
=
&}
=
[}
L

0 10 20 30 40 50 6 20 4
Age of Initiation (Ma) Age of Initiation (Ma)

B -65Ma
0

Gurnis et al. (2004)



Temperature

Transient - Steady State

Arc

Depth (km)

t =025 Myr
300
0 K10[0)
Distance from Trench (km)
| N
-500 -400 -300 -200 -100 0 100 200 300 400 500
AT (°C)

Hall (submitted, PEPI)



Difference in Slab Surface Temperature (Transient — Steady State)

t = 100 Myr

: ]
]
' 1
1 1
1 1
. [
; :
1 1
i ]
1t = 300 Myr
i i
[
' 1
I [
] [}
1 I
- [}
]
. [
1 [

Hall (submitted, PEPI)



179'W

178'W

177°W

176'W

Tonga Arc and the Lau Basin
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Convergence Spreading Arc —-BASC
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AIong—Strike Trends in Parental Magma
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Stage I:
pre-back-arc

Stage II:
back-arc initiation

Stage llI:
back-arc spreading:

Evolution of the Mantle Beneath the Arc
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Model Geometry: BASC
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Evolution of Mantle Flow in Arc-BASC Systems
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Mantle Depletion

BASC (initial)
Arc

I

I

. I

\ :

I

I

[

[

= I

E |
i
-
(O]
o

t =0 Myr
300
Distance from Trench (km) 300
0.02 0.04 0.06 0.08 0.10 0.12

Depletion

Hall et al. (in prep)



Mantle Depletion

BASC (initial)
Arc
I
I
I
I
I
I
I
B I
E |
e
1
O]
@)
t=1 Myr
300
0 Distance from Trench (km) 300
0.02 0.04 0.06 0.08 0.10 0.12

Depletion

Hall et al. (in prep)



Mantle Depletion
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Mantle Depletion
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Mantle Depletion
BASC (initial)

0 Arc /

=
b

E
<
=
o
O]
@)
t =4 Myr
300
0 Distance from Trench (km) 300
0.02 0.04 0.06 0.08 0.10 0.12

Depletion Hall et al. (in prep)



Depletion of Sub-Arc Mantle

1 |
0.015 0.02
Depletion

Hall et al. (in prep)



Depletion of Sub-Arc Mantle
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Thermal structure of the mantle wedge expected to evolve significantly
for >100 Myr following initiation of subduction
- Most pronounced (>100s of °C) at top of wedge / base of overriding
plate
- Slab thermal structure does not vary significantly from “steady state”
- Future directions: use of time-dependent thermal models and
better characterization of overriding plate

Melting related to spreading/extension in the back-arc can lead to
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- Sub-arc mantle becomes increasingly depleted with time
- Sub-arc mantle becomes cooler with time due to extraction
of latent heat during melting at back-arc

Questions?
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Previous Modeling of Arc — BASC systems
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Previous Modeling of Arc — BASC systems
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Along-Strike Trends in BASC Magmatism in the Lau Basin
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Evolution of the Mantle Beneath a BASC
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