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Outline


Does the physical state of the sub-arc mantle vary with time?


1.  Long-term thermal evolution of the mantle wedge beneath arcs


2.  Thermochemical evolution of sub-arc mantle due to melting at a

back-arc spreading center (“pre-conditioning”)


GeoPRISMS Relevance


How are volatiles, fluids and melts stored, transferred and released

through the subduction system?





- What are the melting reactions and loci, and melt pathways from the mantle


  wedge to the surface?


- … how are fluids and melts focused to the volcanic front?





What are the physical and chemical conditions that control subduction

zone initiation and the development of mature arc systems?







- What controls the distribution of volcanoes in space and time?




Subduction Initiation


Gurnis et al. (2004)




Thermal Evolution During Subduction Initiation


Macpherson (2008)




Steady-State Thermal Models of Subduction
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Model Geometry and Boundary Conditions
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Age of Subduction Zones


Gurnis et al. (2004)




Temperature


Hall (submitted, PEPI)


D
ep

th
 (k

m
) 

0 

300 
0 300 

Distance from Trench (km) 

Transient - Steady State 

-500 -200 -100 100 200 400 

ΔT (°C) 

t = 025 Myr 

-400 -300 0 300 500 

Arc 



Difference in Slab Surface Temperature (Transient – Steady State)


Hall (submitted, PEPI)




after Zellmer and Taylor (2001)


Tonga Arc and the Lau Basin
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Along-Strike Trends in Parental Magma
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Figure 8:  Magmatic Heritage and Arc-Back-Arc Evolutionary Model.  a) Ti6.0 vs Si6.0 for submarine and subaerial volcanoes of 
the Tonga arc, calculated by data regression and average.  Data for Volcano A are from this study; data from Volcanoes 19, 18, 
7, Tofua (To), and F are WRs, glass, and non-olivine-hosted MIs from Cooper et al. (in prep); data for Volcano 1 are from WRs 
from Hekinian et al. (2008); data for Ata, Tofua, Metis Shoal, Late, Niuatoputapu (Niu), Tafahi (Taf), the North Tonga boninites
(station 21), and Chichi-jima are WRs from the Georoc database.  Reduced major axis regression from Till (1973) with at least 5 
data points between 3.0 and 10.0 wt% MgO (anhydrous, normalized to 100%), and at least one data point >5.5 wt% MgO; error 
bars are for 95% confidence interval.  Average calculated for at least 2 data points between 5.0 and 7.0 wt% MgO; error bars 
are one standard deviation.  The quadrants of the diagram refer to predicted magmatic heritage as in text  (basalt, incompatible
element (I.E.)-depleted basalt, and boninite).  b) Regional map showing basalt heritage in the southern Tonga arc and boninite
heritage in the central arc, based on designations in a).  Roman numerals refer to Stages in c).  See Figure 1b for abbreviations.  
c) Evolutionary model that generates magmas of different heritage along the Tonga arc.  UCR: convergence rate; USR: half back-
arc spreading rate; UCF: corner flow rate ; xi: original separation distance between the arc and back-arc melting regimes; xCF: 
distance of mantle flow ahead of back-arc crustal accretion zone, due to corner flow, as in text.
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Cooper et al. (2010)


Evolution of the Mantle Beneath the Arc
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Model Geometry: BASC


Prior to spreading at BASC 
(establishes initial conditions) 

After onset of spreading 
 



Evolution of Mantle Flow in Arc-BASC Systems 


D
ep

th
 (k

m
) 

0 

600 
0 600 Distance from Trench (km) 



t = 0 Myr


Mantle Depletion


Arc

BASC (initial)


Hall et al. (in prep)


0 0.02 0.04 0.06 0.08 0.10 0.12 

Depletion 

D
ep

th
 (k

m
) 

0 

300 
0 300 Distance from Trench (km) 



t = 1 Myr


Mantle Depletion


Arc

BASC (initial)


Hall et al. (in prep)


0 0.02 0.04 0.06 0.08 0.10 0.12 

Depletion 

D
ep

th
 (k

m
) 

0 

300 
0 300 Distance from Trench (km) 



t = 2 Myr


Mantle Depletion


Arc

BASC (initial)


Hall et al. (in prep)


0 0.02 0.04 0.06 0.08 0.10 0.12 

Depletion 

D
ep

th
 (k

m
) 

0 

300 
0 300 Distance from Trench (km) 



t = 3 Myr


Mantle Depletion


Arc

BASC (initial)


Hall et al. (in prep)


0 0.02 0.04 0.06 0.08 0.10 0.12 

Depletion 

D
ep

th
 (k

m
) 

0 

300 
0 300 Distance from Trench (km) 



t = 4 Myr


Mantle Depletion


Arc

BASC (initial)


Hall et al. (in prep)


0 0.02 0.04 0.06 0.08 0.10 0.12 

Depletion 

D
ep

th
 (k

m
) 

0 

300 
0 300 Distance from Trench (km) 



Depletion of Sub-Arc Mantle
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Questions? 





after Zellmer and Taylor (2001)




Previous Modeling of Arc – BASC systems


Conder et al. (2002)




Previous Modeling of Arc – BASC systems


Kincaid and Hall (2003)


BASC
 Trench




Along-Strike Trends in BASC Magmatism in the Lau Basin


Martinez and Taylor (2002)




Evolution of the Mantle Beneath a BASC


Taylor and Martinez (2003)


I.


II.


III.


IV.


V.



