What governs the size, location and frequency of great subduction zone earthquakes and how is this related to the spatial and temporal variation of slip behaviors observed along subduction faults? What controls the magnitude and recurrence interval of earthquakes? What mechanical properties and/or fault zone conditions control the wide spectrum of slip rates observed on subduction megathrusts? ## How to answer the questions: Implementation Activities - Comparative Subductology - Generating a global slip deficit map (and everything) - 4-D controlled source imaging and MT combined with passive seismic monitoring on a subduction zone with along-strike variability in slip behavior - Seafloor geodesy encompassing regions of known large seismic slip - Correlating exhumed fault zone structure with specific slip processes - Measure the slip budget of secondary faults as a way to determine their role in complicating magnitude predictability - Drilling into a seismogenic zone - Paleoseismic history to determine segmentation persistence - Laboratory measurements of frictional properties ## Thematic Groups - Comparative Subductology - Generating a global slip deficit map (and everything else) Exhumed fault zone structure & mechanical properties of megathrust materials. ## Requirement of a Study Site - Along strike variability in slip behavior - Spectrum of slip behavior (tsunami EQ, creep, ETS & earthquakes) - Well-known earthquake history - Seismically active - Geodetic accessibility - Clear geological segmentation ## **Consensus Winners** | | Along-
strike
slip
behavi
or
variabi
lity | Spectru
m of
slip
(tsun.,
ETS,
etc.) | Well-know
EQ history | Geodetic
accessibili
ty | Clear
geological
segments | Infrastruct
ure/
Baseline
Info | Active
Seismicity | Multiple
stages of
"seismic"
cycle | |----------------|---|---|--------------------------------------|-------------------------------|---------------------------------|---|----------------------|---| | Alaska | yes | yes | Historic
Some paleo | Yes | yes | Good | Υ | У | | New
Zealand | yes | Yes | Some info
on land &
megathrust | yes | yes | Good
Active
Source
Obs | Υ | ? | | Cascadia | Proba
bly | yes | Paleoseismi
c | maybe | yes | Good | N | n | Also-rans Tonga Vanuatu Solomon Islands Nicoya Southern Chile Northern Japan | | strike slip
behavior
variability | of slip
(ETS, etc.) | EQ history | accessibilit
y | geological
segments | ure/
Baseline
Info | Seismicity | stages of
"seismic"
cycle | |----------------------|--|----------------------------|--------------------------------------|-------------------|--------------------------------|------------------------------|------------|---------------------------------| | New
Zealand | yes | Yes | Some info
on land &
megathrust | yes | yes | Good
Active
Source Obs | Y | ? | | Cascadia | Probably? | yes | Paleoseismi
c | maybe | yes | Good | N | n | | Alaska | yes | yes | Historic
Some paleo | Yes | yes | Good | Y | У | | Tonga | | ? | historic | Some
"land" | Yes
Holocene
variability | | Y | ? | | Vanuatu
(central) | Υ | ? | Historic & some paleo | yes | Yes | | Y | У | | Northern
Japan | yes | Contrast
with
Nankai | Historic & paleo | yes | Yes | | Υ | У | | Solomon
Islands | Υ | ? | Historic
Paleo? | yes | yes | | yes | У | | Nicoya | У | У | historic | У | У | У | У | n | | Southorn | V | V | Historic Q. | V | V | V / 9. EII\ | V | M |