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Magma-"poor” margins versus "volcanic” margins

What do we really know about volcanic margins ?

Are they really so different from “magma” poor

rifted margins ?

What is the origin of the volcanism ? — what are the dynamic processes involved ?

What are the mechanisms leading to breakup ?
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Rifting and magmatism

Origin of the magmatism Laurent Geoffroy

LCB: « Lower Crustal Body »
SDRS: »Seaward Dipping Reflectors »
COT: Continent-Ocean Transition
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GENERAL FRAMEWORK: WEAKENING OF THE LITHOSPHERE
Tectonic Stretching  NEEDS A GRADUAL EVOLUTION OF THE RHEOLOGY
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eDetachment faults are present.
*\Weakening of the lithosphere
by fluids.

eLate serpentinization of the
mantle (fluids).

eStorage of melt in the mantle.

*Needs multiple dikes.
eNormal faulting with dikes.

*A plume head is often present
eNeeds 2-3 km of dikes to
continue rifting without magma.



Some Questions addressed?

Extreme crustal thinning.

Mantle exhumation at the Ocean Continent
Transition (OCT).

Detachment fault/low angle normal fault.

Melt migration or stagnation during rifting.

Dike (Giant) propagation during rifting and at the
transition from continent to ocean.

The effect of sedimentation and erosion on
rifting.

The subsidence history during rifting.



Extreme Crustal Thinning
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Detachment fault/low angle normal fault/
Brittle-Ductile weakening/Boudinage.

Peron-Pinvidic & Manatschal, subm.
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Mantle exhumation at the Ocean
Continent Transition (OCT).
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Agros, Cyprus, 8-16 May 2010 AGU-Chapman Conference

Detachment systems associated with lithospheric extension
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Field Geology (Alps/Pyrenees-Bay of Biscay)
Detachment faults and brittle-ductile weakening
associated with necking and crustal thinning.
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Melt infiltration and thermal evolution during final rifting

<«— distributed extension —» Observation

continental crust Infiltrated sub-continental mantle

Processes

melt trapping, leading to thermal erosion of the deep
mantle lithosphere during final rifting

Consequences

e change of the mantle rheology (weakening)

e thermal structure (hotter than expected)

e subsidence history (retardation of subsidence)

near basalt
solidus T°C

decompression melting of the WHY DOESN’T IT FORM A DIKE?

asthenospheric mantle

|
Cannat et al. 2009

‘non-volvanic’ ? ‘volcanic’

1 km ‘true’ oceanic crust
seismically ‘visible’ Moho

10% infiltration in
10 km thick mantle
no seismically
‘visible’ Moho

9 km depleted mantle

Muentener et al., 2009



Observed magmatic processes in magma-poor rifted margins

(2) syn-exhumation (3) Breakup and post-

MOR-gabbro in breakup
serpentinized mantle Alkaline sills in post-rift
sediments
ODP Site 1070 9R-1 ODP Site 1276-87R-6
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melt infiltration in sub- rifting spreading
continental mantle >

mantle
solidus

depth base lithosphere
(1300°C isotherme)

€

Cannat et al. 2009
ODP Site 897 4R-1



Numerical technique

* Same conservation of momentum and energy.

e Differ in their constitutive updates
— Viscoplastic
— Elastoplastic
— Elastoviscoplastic.

— Different approaches for localization in the brittle and
ductile media.

— It is very difficult to account for melt production and
migration in a large deformation code.

— Diking can be modeled by boundary elements.



Magmatic Extension WEAKENING OF THE LITHOSPHERE

Asthenosphere

Straining —

*Needs multiple dikes.
eNormal faulting with dikes.

*A plume head is often present
eNeeds 2-3 km of dikes to

continue rifting with magma.



Cordillera Darwin (Patagonia)
Rocas Verde rift basin (Jurassic)
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Y along axis
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Example Model
Cross Section

X Cross axis
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Asthenosphere Z axis (Depth)

From Bialas et al.,
2010.
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Magma Injection Weakens Lithosphere

Weak Lithosphere Extends Tectonically

Sometimes a Pulse of Extrusion Makes a Volcanic Margin

From Roger Buck



Intrusion of giant dikes explains:

1. Opening of rifts in normal continental areas

2. No opening of rifts where mantle lithosphere is thick:
Cratons or old oceanic crust

3. Only a few kilometers of magmatic rifting may
weaken lithosphere enough for extension to
continue at moderate stress levels

4. Magma does not have to reach the surface to
weaken lithosphere. Need seismics to ‘see’ magma

From Roger Buck



Tectonic Stretching NEEDS A GRADUAL EVOLUTION OF THE RHEOLOGY

Asthenosphere

Depth (km)

eDetachment faults are present.
e\Weakening of the middle-
lower crust by fluids.

eLate serpentinization of the
mantle (fluids).




Viscous strain softening

Strong Crust, Sensitivity to Velocity

(a) High Velocity, V=10 cm/a
t=12 Ma, Ax = 120 km
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(b) Moderate Velocity, V= 0.3 cm/a
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Physical Model: Both brittle and ductile deformation.
Triggered by fluids/metamorphic reaction.

Locked shear zone

@ Weak mineral phase
@ strong mineral phase

Anastomosing shear zone

Veins/Shear fractures Veins/Shear fractures

Shear fracture formation + slip H
== \leins/Shear fracture w
e Lavier and Bennett, 2010

Logan, L 21



Semibrittle media

Increasing ratio of incompetent/competent material

Discontinuities dominant S Mixed continuous-discontinuous & [Continuous deformation dominant
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but may propagate through
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High interaction through stress Moderate interaction Low interaction between
bridges between competent bodies competent bodies

Localized peaks in shear Fluctuating shear strain rates Fairly uniform shear strain rates
strain rate

Chrystalls Beach Complex, California.
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Partitioning between pure and simple shear.

66% of brittle material
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Depth (km)

Failure envelope in the models:
Middle crust is weakened.

Mises Stress at yield
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Competent: Anorthosite
Incompetent: Quartz.

Competent: Olivine
Incompetent: Serpentine.

Mises Strain (%)

We can use similar
mechanism for the mantle
to decrease the strength in
the mantle with
serpentinization.

Jammes, Lavier. Manatschal, 2010
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Wet vs. dry and not so wet rifts:
Relation to subsidence.

DRY RIFT/ NORMAL FAULTS WET RIFT/ NO NORMAL FAULTS
Very strong subsidence Little subsidence

Rift flanks Weak ductile shear zones
Normal fault (60-30°) Flow of the lower crust
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Rheological evolution (progressive
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Typical structural and heat flow evolution
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Melt focusing mechanisms on top of shear zone.

Accretion Zone

0, Exhumation Channel
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Melt-rich shearing (Holtzman et al. 2003, Katz et al. 2006)

Holtzman and Kohlstedt 2007

Lanzo (ask Mary, or see
Kaczmarek and Mintener
J. Petrol 2008, in press)

Shearing with time:

Melt enhanced shearing and
focussing: strain localization in
presence of melt

High permeability

- 'melt conductor’

After cooling and crystallization:
mylonite and ultramylonite:
extreme localization, Low
permeability



The common processes between each
questions (fluid-rock interactions).

 The evolution of crustal and mantle rheology
during rifting.

 The weakening effect of fluids in the crust and
during mantle exhumation.

* The weakening/strengthening effect of melt and
diking in both non-volcanic and volcanic
environments.

* The evolution of topography (free surface),
sedimentation, erosion and geological structures.



