Illuminating the architecture of the greater Mount St. Helens magmatic system from slab to surface

earth scope

Mount St. Helens Team

Geophysics

- Active-source seismology
 - Levander (Rice) and collaborators
- Earthquake seismology
 - Abers (LDEO), Creager, Vidale, Houston (UW), Moran, Denlinger (USGS), Levander (Rice)
- Electromagnetic Imaging (MT)
 - Schultz (OSU), Bedrosian (USGS)
- Petrology magma chamber dynamics
 - Sisson, Clynne, Pallister (USGS), Bachmann (UW),

Why Mt St. Helens?

- It's active!
- Reasonable size
- Wellcharacterized
- Access for instrumentation

Cascade Eruptions During The Past 4,000 Years

Imaging Targets

Some existing imaging Upper crustal magma reservoir

Waite and Moran, 2009

Magma plumbing from existing MT

Hill et al., 2009

Existing seismic imaging

Seismic velocity model

Parsons et al., 1998

Planned arrays

Passive Seis: 70 broadbands + existing MT: 150 wideband sites Active 3D Seis: 2600 Texans/multiple deploy

Some Impacts

- Long term goal:
 - Try to see magmas from their mantle source to the near-surface
- Near term goal:
 - When complete, we will produce the largest, most comprehensive dataset for plumbing of any volcanic system
- Vehicle for publicizing GeoPRISMS science broadly
- Strong collaborations with other groups