GeoPRISMS-EarthScope Planning Workshop for the Cascadia Primary Site

#### Large-scale and Deep Processes

# Thermal-petrologic-fluid flow: structure and dynamics of subduction zones

# Ikuko Wada – Virginia Tech

in collaboration with

Kelin Wang<sup>1</sup>, John He<sup>1</sup>, Roy D. Hyndman<sup>1</sup>, Mark D. Behn<sup>2</sup>, Alison M. Shaw<sup>2</sup>, Catherine A. Rychert<sup>3</sup>, E. Marc Parmentier<sup>4</sup>

<sup>1</sup> Pacific Geoscience Centre, Geological Survey of Canada
<sup>2</sup> Woods Hole Oceanographic Institution, MA
<sup>3</sup> University of Bristol, UK
<sup>4</sup> Brown University, RI

# **Mantle Flow in Subduction Zones**



The overall thermal structure depends strongly on the age of the slab and mantle wedge flow.

# Mantle Flow beneath the Forearc and Arc



The maximum depth of decoupling (MDD) controls the trenchward extent of mantle wedge flow.

# **Interface Layer Approach**



Decoupling depends on the strength contrast between the interface ( $\eta$ ') and the overlying mantle ( $\eta_e$ ).

# Maximum Depth of Decoupling (MDD) in N. Cascadia



- The dependence of the set of t
- The pling, deading the satisfiest formal reant astrates the and hope and the satisfiest formal reant astration of the sub-arc mantle.



# **Common Maximum Depth of Decoupling**



The MDD is 70-80 km for most subduction zones [Wada & Wang, 2009; Syracuse et al., 2010]

# What controls the MDD?



#### Factors that affect the mantle-interface strength contrast

- T- dependence of the mantle and interface rheologies
- Metamorphic and dehydration/hydration reactions
- Fluid and melt contents, grain size, ...
- Mantle dynamics beneath the backarc

• . . .

# Mantle Flow beneath the Backarc



 Hot backarcs inferred from heat flow, seismic structure, and xenolith thermobarometry [*Currie and Hyndman*, 2006] cannot be maintained by corner flow.

# Mantle Flow in the Backarc

#### **Small-scale convection**

- Slab-driven flow and edgedriven flow [Hardebol et al., 2012]
- It affects the thermal state of the forearc and arc regions & geochemistry of arc magmas [e.g., Hall et al., 2012].





• Along-arc variations in slab geometry [e.g., *Kneller and van Keken*, 2007]



**3-D thermal model for Cascadia** 

[Wang et al, in progress]

 Along-arc variations in slab geometry [e.g., Kneller and van Keken, 2007]

> Temperature 700

> > 600

400

200

- Slab edge flow [*Jadamec* and Billen, 2010]
- Slab roll-back [*Long and Silver*, 2008]

Slab beneath central Alaska



- Structural obstacles
- "Cold plumes" [Gerya and Yuen, 2003, Gerya et al., 2006]
- Foundering of arc lower crust [*Behn et al.*, 2007]...





#### [Schmandt and Humphreys, 2011]

# **Thermal Structure**



# **Petrologic Structures**



- Shallower peak crustal dehydration in Cascadia
- Thinner zone of serpentine stability in the Juan de Fuca slab
- Zone of serpentine stability in the stagnant wedge in both



#### Pattern of H<sub>2</sub>O Release from the Slab



Lithologies & H<sub>2</sub>O contents in the top 11 km of the slab: 0.6 km volcanics 2.1 wt% 1.4 km dykes 1.8 wt% 5 km gabbros 0.8 wt% 4 km peridotite 2.0 wt%

Thermodynamic Calculations by using Perple\_X [Connolly, 2009]

10

8

6

4

2

0



#### **Fluid Flux Calculations**

- 11-km-thick section of the slab is divided into 100-m-wide vertical columns, each consisting of 100-m-thick elements.
- $H_2O$  release is calculated in the shallowest column, and the updated  $H_2O$  contents of the column is passed down-dip.





See Hacker [2008] and van Keken et al. [2011] on Global H2O flux



[Faccenda et al, 2009]

#### **Localized Hydration and Rehydration**



# Effects of Localized Hydration in the Incoming Plate



# **Effects of Rehydration in the Slab**



# **Fluid Migration Path in the Slab**



[Zack and John, 2007]

 The degree of rehydration depends on fluid migration path, which is influenced by factors such as vein/fracture network, tectonic pressure.



Faccenda et al., 2012

# Hydration in the Overlying Mantle Wedge



# **Effects of Hydration in the Overlying Flowing Mantle**



 The overlying mantle is too hot for a significant degree of hydration to occur.

# **Subduction Channel Mélange**

Compositional variations of the subduction interface material due to...

- Mechanical mixing with the subducted sediments and crust
- Addition of slabderived Si- and Alrich fluids



# Subduction Channel Mélange

- The mélange composition can take up more H<sub>2</sub>O and delays H<sub>2</sub>O liberation further down-dip.
- H<sub>2</sub>O uptake occurs over a narrow depth range.





# Fluid Migration in the Mantle Wedge



- How does H<sub>2</sub>O migrate to the high temperature region?
- Why does the arc tends to form where the slab is 100-120 km deep?

# Water in Mafic Arc Magmas (olivine melt inclusions)



- Fluid migration occurs through interconnected pores between grains.
- Grain-scale permeability (k) depends on grain size (d) and fluid fraction ( $\phi$ ):  $k = (d^2 \phi^3) / 270$  [Wark et al, 2003]





[Cagnioncle et al., 2007]

# Steady State Grain Size Distribution

Slab age100 MaSubduction rate4 cm/yrSlab dip30°

Grain size increases downdip from 10-100  $\mu$ m to a few cm, by > 2 orders of magnitude, independent of subduction parameters.



[Wada, Behn, & He, 2011, JGR]

# Effect of Grain Size Variations

Fluid migration model in progress





# **Migration of Aqueous Fluids and Melts**

- Plumes/diapirs [*Hall and Kincaid*, 2001; *Gerya and Yuen*, 2003; *Currie et al.*, 2007; *Behn et al.*, 2011]
- Shear induced melt bands [Spiegelman, 1993; Katz et al., 2006; Butler, 2009]
- State of stress in the overlying plate



# **Outstanding Questions**

- What controls the maximum depth of slab-mantle decoupling – disappearance of mantle-interface strength contrast?
- How does the hot backarc maintained and what is its effect on the arc and forearc region?
- What is the hydration state in the incoming plate and physical properties along deep cutting faults?
- What are the key mechanisms that control the fluid migration path in the subducting slab, in the cold mantle wedge nose, and in the hot flowing mantle?
- What controls the location of the arc?

- Structural obstacles
- "Cold plumes" [Gerya and Yuen, 2003, Gerya et al., 2006]
- Foundering of arc lower crust [Behn et al., 2007]



# **Seismic Wave Attenuation**

# Experimentally derived model for shear wave attenuation in melt-free polycrystalline olivine

$$Q_s^{-1}(\omega, T, P, C_{OH}, d) = \left(Bd^{-p_q}\omega^{-1}\exp\left(-\frac{\left(E_q + PV_q\right)}{RT}\right)\right)^{\alpha}$$

[Behn et al., 2009, and references therein]

- *B* pre-exponential factor calculated for  $C_{OH}$  of 1000 H/10<sup>6</sup>Si
- d grain size (1 cm is assumed.)
- $p_q$  grain-size exponent
- $\omega$  Frequency (1 Hz is assumed.)
- $E_q$  activation enthalpy
- $V_q$  activation volume
- $\alpha$  non-dimensional frequency dependence

# **Grain Size Evolution Model**

[Austin and Evans, 2007, 2009; Behn et al., 2009]



Note: Two main deformation mechanisms in the upper mantle are dislocation and diffusion creep.

- Grain size reaches equilibrium faster than the rate of change in *T* and deformation conditions and thus a steady state is assumed.
- The model does not account for brittle deformation and is valid only for creeping regions (> 600° C).
- Maximum grain growth up to 1-2 cm due to the effect of grain boundary pinning is assumed.

# Seismic Attenuation (Q<sup>-1</sup>)



[Behn et al., 2009]

*Q*<sup>-1</sup> increases with increasing *T* and decreasing *d*.





 Predicted attenuation for 1000 H/10<sup>6</sup> Si beneath the arc is consistent with the observations without invoking the effect of melt.



### **Slab Dynamics**



#### What controls the slab dynamics?

- Buoyancy of the slab
- Rheologies of the slab and the surrounding mantle

Both depend on T, composition, phase transformations, grain size, water content and melt fraction [Billen and Hirth, 2007].

# **Common Depth of Decoupling**



The MDD tends to be 70-80 km [Wada et al., 2009; Syracuse et al., 2010]

#### Depleted upper mantle peridotite at saturation



# Effect of Grain Size Variations

Fluid migration model in progress [I. Wada, M. Behn., and E. M. Parmentier]





Fluid velocity  $\vec{V}_f = \vec{V}_m + \frac{\vec{S}}{\phi}$ 

Darcy's flux

$$\vec{S} = -\frac{k}{\eta} \left[ \Delta \rho \vec{g} + \nabla P \right]$$

Permeability

$$k = \phi^3 d^2 / 270$$

# **Conceptual Model for Fluid Migration**

