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National seismic hazard maps are the basis of design maps
used in International Building Code and International
Residential Code for new buildings in 50 states
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Probabilistic Seismic Hazard
Assessment
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shallow seismicity rate grid
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Puget Sound: Effect of including areal source zone

accommodating 3 mm/yr N-S convergence measured by GPS
(in addition to convergence from faults used in hazard maps)
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Great earthquakes on
Cascadia Subduction Zone
have been included in NSHM'’s
since 1996, with rates

based on paleoseismic studies
(e.g., Atwater, 1992)

500 year average recurrence
M8.8-9.2 (0.67 prob)

M8.0-8.7 filling zone with 500 yr
Recurrence (0.33 prob)

Figure shows different models for
Down-dip edge of rupture used in
2002 and 2008 maps




What we need to know most about
Cascadia great earthquakes

* Recurrence rates, rupture zones, and
magnitudes of great earthquakes based on
onshore and offshore paleoseismic
observations

 Down-dip edge of rupture of great
earthquakes inferred from GPS and uplift data,
ETS, thermal modeling, paleo-slip, structural
characteristics

* Ground motions expected for great
earthquakes
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Figure from Goldfinger et al. (2012); great earthquake ruptures
inferred from turbidites over past 10,000 years

We convened workshop at Oregon State University on Nov 18-19,
2010 to evaluate turbidite data for constraining recurrence models
for CSZ

See Frankel (2011) USGS Open-File Report 2011-1310 for
summary
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Proposed Logic Tree for CSZ great earthquake recurrence; weights in parentheses
GEA = Goldfinger et al. (2012) AG= Atwater and Griggs (2012)
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Peak Ground Acceleration
or 2% Probability of Exceedance in 50 Years
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December 2011 workshop participants gave high weight to studies using GPS and uplift

data to constrain down-dip edge of rupture

McCaffrey and King (2011)
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Light Green: average of McCaffrey and
King (blue) and Schmidt et al. (red)
contour for 1cm/yr locking; 50% wt

30% wt: Use average of:

Dark Green: Top of tremor from
Gomberg et al. (2010)

Orange: Top of tremor from A. Wech
(provided by McCrory and Blair)

Black: base of locked zone from
Fluck, Hyndman, and Wang (1997)
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Estimating Ground Motions from
Great Earthquakes on the Cascadia
Subduction Zone Earthquakes:

Source and path issues



-- Earthquake Planning Scenario --

ShakeMap for Casc8.0 Scenario
Scenario Date: JUL 16 2009 09:00:00 PM PST PST M9.0 N45.00 W124.50 Depth: 10.0km
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Scenario ground motions for
M9.0 earthquake based

on ground-motion prediction
equations of Zhao et al. (2006),
Atkinson and Boore (2003), and
Youngs et al. (1997), based on
strong-motion recordings from
various subduction zones.




Tohoku earthquake: Results of inversions of velocity waveforms from strong-motion

records (0-0.2 Hz) and 1 sps GPS displacement waveforms (Frankel, in review)
Sub-event 1; Mw 8.5 Sub-event 2; Mw 9.05, starts 35 s later

139" 140" 141" 142" 143" 1447 145

Sub-event 1 ruptures downdip and to north; generates low (< 0.2 Hz) and high frequency
ground motions

As sub-event 2 ruptures down dip and to south, high-frequency sub-events 3 and 4
occur (d=40 km). Sub-event 2 only generates low frequencies (< 0.2 Hz) at shallow
depths ( < 30 km), has rise time of slip of about 40 sec.

18




MYGH12 EW

From borehole accel.recording

cm/s

40
30
20
10

-10
-20
-30
-40
50|
60|

-70

0

-| | I | 1 ] 1 [ ] I I | I | 1 1 ] ] | I I I 1 |
. ’ g |
N 2 |
f_ W m )
- vel 0.1-0.5 Hz | 3 .
[ 1 o
- acc dhi " _ 1
3 25%g|
I T T T T T T T T T T T e
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

SecC

Buildings
20-100
stories

are most
affected by
motions at
these
frequencies



o
1)
C
S
O
|
D
O
o=
©
'
2
|

Slip used to model sub-event 3 using synthetics from a plane-
layered velocity model
Mw 8.0, slip velocity 15 m/s, ave Vr= 3.0 km/s
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Compare the 15 m/s slip velocity to the 2.7 m/s slip velocity used for
modeling crustal earthquakes and NGA (Frankel, 2009; 100 bars).
Implies stress drop for sub-event 3 is about 560 bars
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Observed and synthetic seismograms for sub-event 3 filtered at 0.1-0.5 Hz (surface recordings).
Synthetics based on Mw 8.0; stress drop of 560 bars, source dimension of 75 km x 30 km,
ave. depth 45 km.
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From Wu et al. 2008 JGR: 1978 (M7.4) and 2005 (M7.3) Myagi-Oki earthquakes
BO8316 WU ET AL.: SOURCE PROCESSES OF THE MIYAGI-OK1 EARTHQUAKES BO8316
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Figure 5. Slip distributions of the Mivagi-oki earthquakes. The black contour lines and color contours
represent the slip distributions of the 1978 and 2005 events, respectively. The epicenters of the two events
are marked by black (1978) and red (2005) stars, respectively; note that because of the similar locations
of the two epicenters, the black star 1s almost completely obscured by the red one. The seismograms in
Figure 3 were observed at the four pairs of stations shown on the map (black squares for the 1978 event
and red circles for the 2005 event).
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Presentation Notes
First from data, then residuals


From Phillips et al. (in press), Q tomography based on recordings of earthquakes
from Earthscope Transportable Array
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Figure 6. Q for two frequency bands. Results for the 0.75-1.5 Hz band are shown on the left and

for the 6-12 Hz band on the right. Color bars differ, we see roughly twice the Q variation at low




Some Research Priorities for Improved Seismic
Hazard Assessment for the CSZ

Confirm that mud-silt turbidites are caused by shaking from
M8 earthquakes in southern CSZ

More onshore studies of tsunami deposits, liguefaction and
coastal subsidence to identify M8 quakes, including studies of
lake deposits caused by shaking; also useful for constraining
down-dip edge

Paleoseismology on crustal faults: improve our fault
inventory; determine earthquake chronologies and slip rates

Use GPS to look at regional strain; reconcile with observed
seismicity rates and fault slip rates

Ocean-bottom transducers for GPS: better resolve coupling,
identify asperities

Any way to quantify hazard from deep earthquakes under
Portland and SW Oregon?




Research needed on ground motions from CSZ great
CEIQ I [SELGE

Improve 3D velocity and Q models needed for making
accurate synthetics (especially S-waves and surface waves):
top 60 km and especially top 2 km for sedimentary basins that
urban areas are located on. More detailed Q tomography
would be useful for comparing paths across Cascades and
along forearc

Better understand depth-dependence of high-frequency
seismic-wave generation on the subduction interface; better
understand scaling of rise times and asperity dimensions with
magnitude

Ultimate goals: Make broadband synthetic seismograms (0-20
Hz) for M8-9 Cascadia earthquakes, including rupture
directivity, 3D basin effects, nonlinear site response; use
directly in hazard maps




1 Hz S.A. (%g) with 2% Chance of Being Exceeded in 50 Years; this is the period
that would most affect a 10 story building

Seattle urban
seismic hazard map
with soil conditions, basin effects,
and rupture directivity

Combines results of 3D ground-motion
simulations of 541 scenarios
(Seattle fault,

Cascadia subduction zone, random
shallow and deep earthquakes)

USGS Open-File Report
2007-1175
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Figure 20. Logic tree for Cascadia subduction zona (C5Z). Parameters in this figure include some aleatory vanability as well as
depicted epistemic uncertainty. Addmional aleatory variability shown in table K-1 in Appendix K.

From 2008 NSHM Documentation (Petersen et al., 2008)




Ground-motion prediction equations for
subduction-zone earthquakes use nearest
distance between rupture surface and site

e Often based on inversion of strong-motion or
teleseismic records

* Tohoku earthquake illustrates that high-
frequency energy may be generated in areas
closer to coast than areas of high slip

* What amount of slip correlates with “edge” of
rupture for use in GMPE’ s? 10% of peak slip?
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