## Offshore GPS i.e., GPS-Acoustic Seafloor Geodesy

## Dave Chadwell, SIO

Spahr Webb, Scott Nooner, Mike Tryon, Uwe Send

Offshore GPS or GPS-Acoustics combines kinematic GPS with precision acoustic ranging to seabed transponders to track the horizontal motion of the seafloor.



What offshore Geodetic observations contributed to determining the co-seismic slip of the Tohoku –Oki Earthquake ?



(Newman, 2011)

What offshore Geodetic observations contributed to determining the co-seismic slip of the Tohoku –Oki Earthquake ?



#### What offshore Geodetic observations contributed to determining the co-seismic slip of the Tohoku –Oki Earthquake ?



35° 138°

139°

140°

141°

142°

143°

144° (from GSI web site)

145°

# What offshore Geodetic observations contributed to determining the co-seismic slip of the Tohoku –Oki Earthquake ?



(from GSI web site)

(slide from Ishikawa et al. 2012)

## More GPS-A sites in Japan ...

An additional ~20 sites (for a total of ~ 30) to be deployed in the offshore region of the Tohoku EQ.



(slide from Ishikawa et al. 2012)

## More GPS-A sites in Japan ...



(slide from Ishikawa et al. 2012)

### **GPS-A sites in Cascadia**



#### While all (almost) geodetic data onshore the majority of slip-rate deficit occurs offshore.



(McCaffrey et al., GJI, 2007)

#### Seafloor geodesy needed to refine understanding of fault behavior

Boundary between
"locked" and transition
zone.

2. What is the fault behavior in the up-dip region ?



(Burgette et al., 2009)

## **Operational barriers to more GPS-Acoustics**

Need less expensive alternatives to large ships for the surface platform.

Need longer lasting, less expensive markers on the seafloor.



#### Projects addressing these issues ....

# PLATFORM 1: An autonomous, moored buoy for CONTINUOUS GPS-A GOAL: To increase the temporal resolution from months, years to days.



#### Acoustic hydrophone

(NSF-OCE-0551363 from OTIC)

(Chadwell, Send, Tryon)

Deep water (~1200 m) test

### PLATFORMS 2: Small vehicles for GPS-Acoustics

GOAL: To remove the requirement for a specialized ship or any ship.



Portable, self-powered GPS-Acoustic float, deployable from small vessels.



- A rudder at the tail steers the glider in any direction
- Both upward and downward motions produce forward thrust

Presently both systems under evaluation for GPS-A. The Wave Glider requires no ship and is potentially transformative for GPS-A.

#### (NSF OCE-1130003 from OTIC)

## Permanent seafloor Benchmarks

GOAL: To provide horizontal and vertical reference marks on the seafloor for the long-term.



In-expensive, permanent seafloor benchmarks allow seafloor transponders to be placed and removed with mm registration.

(Chadwell, Webb, Nooner)

(NSF-OCE-1155305 recommended by OTIC)

## Offshore PBO ?







#### Benchmarks



Combine Geospar, Wave Glider and Benchmarks for a five year campaign in Cascadia. Then can move transponders to Alaska, benchmarks remain for future re-measurement.

## Tasks for seafloor geodesy:

- 1. Refine location of boundary between "locked" and transition zone. Occurs offshore, seafloor sensors see larger signal.
- 2. Fault behavior in the up-dip region. *Locked or Frictionless, etc.*?
- 3. Deformations of the incoming plate. *Always at same long-term geologic rate?*
- 4. Capture eventual co-seismic motion. *Example from Japan*.
- 5. Transient motions. *Continuous seafloor geodetics*.