PENNSTATE

Mechanics, structure, and evolution of forearcs: the Aleutian margin as seen from a global perspective

DONALD FISHER Penn State University

Significant collaborators:

Costa Rica- T. Gardner, J. Marshall, K. Morell, P. LaFemina, J. Stchler,

M. Protti

Japan- E. Kirby, K. Furlong, C. Regalla Sumatra- J. Austin, D. Mosher, S. Gulick Alaska- S. Brantley, B. Clark, T. Byrne Taiwan- S. Willett, E.-C Yeh, C. Fuller

What do other convergent margins tell us about the Aleutians?

- Coulomb wedge mechanics- minimum and maximum taper
- Accretionary vs. non-accretionary (or erosive) margins- wedge taper
- Accretionary examples- Taiwan, N. Sumatra
- Erosional examples- Costa Rica- Northern Japan
- The Aleutian trench- Basal dip, topographic slope- What do Coulomb wedge mechanics tell us?

Coulomb Wedge Theory-How does surface slope relate to principal stress orientations and wedge strength?

 If material and basal detachment are Coulomb, principal stress orientation and taper angle are constant. (Dahlen, 1984)

Dahlen, 1984

How do long term processes in the forearc relate to or reflect plate boundary coupling?

Mass Balance

Ranero, C.

1980's & 1990's Coupling Estimation Efforts

Seismic Coupling

Peterson and Seno, 1984

Pacheco, Sykes, and Scholz, 1993

Forearc Slope and Wedge Taper for accretionary and erosional margins

Clift and Vannucchi, 2004

Taiwan-an accretionary wedge backed by a non-accretionary wedge

Double-sided wedge with underplating

Fuller, Willett, Fisher, and Lu, 2006

Fig. 5. (A) Fault sign 168s after repture initiation estimated by using 20 armschaly distributed telescimic S/H waveforms (A = 45 to 85). The repture modes consists of two faults, the first having a strite of 324^o and a tign of 8^o and the second having a strite of 324^o and a sign of 7^o (based on the mechanism of the 22 December 2004 M₀ = 6.0 aftershoid) (6) Sign distribution from method. It he relations can intermediate pendod surface waves and long-period a similary reduces the detail imaged in the repture but provides a first-reducer view of the sign distribution (C) Sign distribution of finite fault model. It using telesesmic body waves (5 to 200 s).

Intermediate-period three-component regional waves (So to 500 s), and jong-period theseismic waves (So to 2000 s). The surface projections of three fault segments are colored on the basis of the sign amplitude. The black thick and thin lines delimites the trench mapped fram the ETOPO2 and 50 km iso-depth slab contour. The aftershocks (Ml > 5) downloaded fram NEIC are indicated by black dots. Waveform first for each model can be found in the electronic supplements. Sign of the 28 March 2005 event is outlined with a dashed line. Area ruptured during the 28 March 2005 event is outlined with a dashed line.

Ammon et al., 2005, Science

Sumatra

Sumatran Forearc Plateau- coincidence of an asperity with a positive TPTA

Graindorge et al., 2008

Deformation at long wavelengths-two forearchighs- regularly spaced (~13 km) ridges

Fisher, Mosher, Austin, Gulick, Masterlark, Moran, 2009

Convex-up profiles and horizontal wedge tops

Wells, Blakely, Sugiyama, Scholl Dinterman, 2003

Fuller, Willett, Brandon, 2006

Wang and Hu, 2006

Mosher, Austin, Fisher, Gulick, 2008

The Toe

Backthrusting and arcward vergent folding

Mountain Fronts

The problem: Vann, Graham, Hayward, 1986

The solution: Vann, Graham, and Hayward, 1986

Mackenzie Mts.: Vann et al., 1986

Pakistan, Alberta, Taiwan: Humayon Lillie, Lawrence, 1991

Costa Rica-outer forearc subsidence (erosion) coupled to uplift of the inner forearc and arc

135°0'0'E

40.010

N::0:0:92

Interseismic onland shortening

Coseismic onland subsidence and extension

Long Term active shortening across the arc and back arc Permanent uplift of the coast

Basal dip and Surface slope

Aleutian trench

Freymuller et al., 2008

ETOPO1- NOAA

Freymuller et al., 2008

Hayes and Wald, 2009

Kodiak Archipelago

Kodiak Archipelago

- Underplated rocks (red)lower greenschist facies, slaty cleavage, southeast vergence
- Offscraped rocks (blue)unmetamorphosed, weakly cleaved, both

Rowe, Moore, Meneghini, and McKeirnan, 2009

Conclusions

- Strength of the forearc wedge can be linked to topography through Coulomb wedge mechanics
- Most non-accretionary margins evolve beyond the minimum taper (Hmm, the western Aleutians?)
- Regions of high coupling can be associated with flat areas of the forearc- both positive and negative TPTAs

 Portions of the forearc composed of underplated rocks are deformed early but subsequently provide a buttress as they are exhumed during continued underplating and outboard accretion (experienceing elastic strain related to the seismic cycle a la Wang and Hu, 2007).