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Overview: source to surface magmatism at Quaternary rift zones

Timescales, volumes and
physical mechanisms of melt

emplacement at the rift surface
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Links between melt production/

thermomechanical state of the Melt ascent processes /

mantle and recent magmatic rift lithospheric plumbing systems
zones/rift development?
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Barnie and Oppenheimer. in prep.
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Melt volumes during Dabbahu rifting phase

Initial part of rifting cycles are dominated by
intrusion, volcanism becomes more likely later in

cycle (relaxation of tectonic stress e.g. Buck et al.
2006).

Dabbahu rifting phase has very high intruded to
erupted melt ratio — no ‘excess’ eruptible melt?

Wright et al. 2012.
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Melt generation and ascent: Trace element compositions
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» Afar lavas enriched in incompatible trace element compared to MORB/Red
Sea lavas, similar to pre-rift flood lavas - Afar lavas are not MORBs!

* TE ratios such Ba/Nb, Ce/Pb and La/Nb similar to OIB



Melt ascent
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Melt generation and ascent at an active rift zone in central Afar

Separate plumbing systems feeding
rift axis and off-axis volcanoes

off-axis fracture Vast majority of melt supplied to
zone/volcanism ..
shallow crust is intruded as dykes
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Primary melting occurs in hot Higher degree melts erupted at axis,

mantle, significant upwelling and suggests mantle upwelling is focused
melting limited to depths > 80 km beneath axis of recent segment
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Future questions....

How do melting processes vary along strike between the MER
and the Red Sea?

Quantification of melt volumes and volcanic output

Volcanic architecture and eruptive history/formation of active
rift segments

Structure and composition of the lithospheric plate — xenoliths,
melt-rock interactions, thermal models.

What links mantle processes to recent surface focusing of
magmatic-tectonic activity?
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Thank you.......
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