

Offshore Hikurangi Margin: Tectonic deformation - sedimentation - climate interactions

Philip Barnes

National Institute of Water & Atmospheric Research, Wellington

Outline

- 1. Summarise Hikurangi Margin geomorphology and tectonic structure
- 2. Relative roles of control parameters on active forearc basins
- 3. Role of submarine canyons
- 4. Input sequence: Hikurangi plateau and trough

Subduction margin sedimentary basins and tectonic geomorphology

Climate

* Precipitation rate to catchment (rainfall, snow)

* Extreme events

Sedimentary Responses to Climate & Sea-level Changes

- * Sediment supply & dispersal / bypassing
- * Sequence architecture

Terrestrial Sediment Supply

- * Uplift rate
- * Catchment lithology
- * Erosion rate and sediment yield
- * Oceanography / wave climate/ sediment dispersal
- * Arc volcanism
- * Earthquake ground shaking

Tectonic parameters

- * Plate convergence rate
- * Plate convergence obliquity
- * Interplate coupling
- * Seismicity (frequency / magnitude)
- * Geological strain partitioning

Upper Plate Wedge

- * Frontal accretion
- * Underplating
- * Tectonic erosion (frontal / basal)
- * Uplift / subsidence
- * Structural inheritance
- * Structural evolution
- * Taper / tectonic stability
- * Slope stability

Subducting Plate

- * Thickness, age, strength
- * Surface roughness / relief (grabens, horst, seamounts, ridges)
- * Pelagic sediment cover
- * Thickness of Trench-fill turbidites

Barnes et al, unpubl

Taihoro Nukurangi

Forearc basin structure analyses indicate polyphase deformation, and reactivated faulting

Barnes et al., 2002 Barnes & Nicol 2004

Accretion-dominated imbricated wedge: south of Hawke's Bay

Southern Hikurangi Margin

Outline

- 1. Summarise Hikurangi Margin geomorphology and tectonic structure
- 2. Relative roles of control parameters on active forearc basins
- 3. Role of submarine canyons
- 4. Input sequence: Hikurangi plateau and trough

⇒ Stratigraphic architecture of sedimentary basins at continental margins is known from a multitude of studies...

...but predominantly from **passive margin settings**

- Low rate regional subsidence
- Eustasy as a predominant driver

Studies on active margins characterised by complex defm and uplift have been relatively scarce...

Taihoro Nukurang

NEED WELL CONSTRAINED STRATIGRAPHIC MODELS FOR ACTIVE SUBDUCTION MARGINS

TO UNDERSTAND & QUANTIFY THE INFLUENCE OF CONTROL PARAMETERS – TECTONICS, EUSTASY & CLIMATE – ON THE STRATIGRAPHIC ARCHITECTURE

Example from the active Hawke Bay forearc basin

Paquet et al. 2009, 2011

Morphostructural evolution of active forearc basins

Fabien Paquet

The example of the Hawke Bay forearc basin

Source to sink approach

Paquet et al. 2009, 2011

Methodology:

⇒ Identifying the last depositional sequence (140 ka) in order to produce a reliable stratigraphic model

⇒ Using this model to describe the stacking pattern of depositional sequences of the last c. 1 Ma

⇒ Quantifying preserved volumes of sediments in the Hawke Bay forearc domain

⇒ Evaluate the role of each control parameter on the stratigraphic architecture at different time scales

Morphostructural Evolution of Active Forearc Basins

An extensive dataset:

- marine MCS
- 3.5 KHz
- Boomer
- Cores
- Oil exploration wells
- Field mapping

Paquet et al. 2009, 2011

Taihoro Nukurangi

Boomer seismic surveys – Hawke Bay

Paquet et al. 2009

enhancing the benefits of New Zealand's natural resources

-N-I-WA

Taihoro Nukurangi

Hi-fold multichannel seismic data – Offshore Hawke Bay

Paquet et al. 2009

enhancing the benefits of New Zealand's natural resources

Taihoro Nukurangi

Construct facies and depositional model for last sealevel cycle sequence

Paquet et al. 2009

enhancing the benefits of New Zealand's natural resources

N-IWA Taihoro Nukurangi

Offshore seismic stratigraphy correlated to coastal plain wells

Develop end-member paleogeographic interpretations

Paquet et al. 2009,

With one well constrained sealevel cycle sequence......

Paquet et al. 2009, 2011

....interpret older stratigraphic successions over 1 Ma timescale

....and identify multiple sealevel cycle sequences

TWTT

NIWA

Taihoro Nukurangi

11 sequences correlated throughout Hawke Bay

1<u>0 Km</u>

Vertical exageration : ~ 8 x

Paquet et al. 2011

All sequences correlated to MIS/Eustatic sealevel curves

Isopach mapping of each depositional sequence

Quantitative methodology to determine preserved sediment fluxes

Significant errors at each stage

Preserved sediment fluxes during the last 1.1 Ma :

Change in basin configuration at 430Ka: Tectonic influence on preservation potential?

Possible result of:

- Cannibalism?
- Change in pres'n potential?

Significant increase entering Last glacial : Seq 1-0 transition

V. High present day sediment flux:

Anthropogenic effect
(deforestation, land use)

Control	Time scale			
parameters	1 ka	20 ka	100 ka	1 Ma
Tectonic deformation	***	*	*	***
Eustasy	*	***	***	*
Climate	* * *	***	* * *	*

Outline

- 1. Summarise Hikurangi Margin geomorphology and tectonic structure
- 2. Relative roles of control parameters on active forearc basins

3. Role of submarine canyons

4. Input sequence: Hikurangi plateau and trough

Mountjoy et al 2009, NIWA, unpubl.

> Pahaua Cook Strait

Kaikoura

Pegasus

Truncated ridges and cleaned out lower channels

Madden

Poverty

Outline

- 1. Summarise Hikurangi Margin geomorphology and tectonic structure
- 2. Relative roles of control parameters on active forearc basins
- 3. Role of submarine canyons

4. Input sequence: Hikurangi plateau and trough

Input Sequence: Hikurangi trough and plateau

Lewis et al 1998

A 120 Ma LIP Plateau with axial trough turbidite system

Input sequence: North Hikurangi

Input sequence: South Hikurangi

~6 km thick trench-fill, over..... ~3 km thick Chatham Rise sequences

enhancing the benefits of New Zealand's natural resources

Taihoro Nukurangi

Late low-stand phase

Relatively low sand:mud Long leveed singular channels over frontal lobes

NLWA

Taihoro Nukurangi

Posamentier & Walker 2006

Crevasse splay

50 m

onekm

Input Sequence: Hikurangi trough and plateau

Lewis and Pantin, 2002

enhancing the benefits of New Zealand's natural resources

Taihoro Nukurangi

A conclusion.....

The Hikurangi margin has all the natural physical attributes required for unravelling tectonic - sedimentation - climatic interactions on active subduction margins

