

Tectonics affects sedimentation; sedimentation affects tectonics

Why do subduction inputs matter?

- Stratigraphic partitioning at décollement interval imbricate thrusts/folds, splay faults, thrust vergence
- Sandy turbidite intervals above/below décollement
 diffuse/focused drainage, pore pressure, critical taper
- Detrital clay mineral assemblages above/below décollement interval
 - friction, fault-slip behavior (SSE)
- Diagenesis and fluid production above/below décollement interval
 - pore pressure, effective stress

Saffer & Bekins (2002) *Geology*

Present

Note that Kuroshio Current intensified ~3 Ma Isthmus of Panama closed Stronger subtropical gyre

Yoshikawa & Nemoto (2010) Marine Geology

Yoshikawa & Nemoto (2010) Marine Geology

Seismogenic Zone Experiment: Which units subduct to up-dip limit?

Unusually high content of smectite – important for fluid production and pore pressure as strata move toward up-dip limit of seismogenic zone

Modulation of clay minerals

- Parent rocks in source areas
- Climate and topography
- Volcanism
- Prevailing wind direction
- Surface/bottom currents
- Bathymetry => gravity flows
- Early diagenesis (volc. glass => smectite)

After: Kimura et al. (2005) – GSA Bulletin

Formation of basement high (Kashinosaki Knoll) near back-arc ridge axis (Kinan seamounts)

After: Kimura et al. (2005) – GSA Bulletin

Cessation of near-trench volcanism Progressive erosion of plutons and accretionary prism

Influences on sand bodies

- Parent rocks in source areas
- Climate and topography
- Volcanism
- Bathymetry => gravity flows
- Incision of submarine canyons
- Sea level
- Basement relief (seamounts)
- Prism architecture (upslope trapping)

Pickering et al. (in press) G-cubed

Plio-Pleistocene Kazusa Group Boso Peninsula (forearc basin)

Pickering et al. (1999) J. Geol. Soc. London

Model for comparison to Kumano forearc basin

~13 Ma

Kyushu Fan ~14.3 to 12.2 Ma

Pickering et al. (in press) G-cubed

Monterey canyon/fan

Daiichi Zenisu Fan ~8 to 7.6 Ma

(Pre re-initiation of northward subduction of Shikoku basin)

Daini Zenisu Fan ~8 to 7.6 Ma

(Post re-initiation of northward subduction of Shikoku basin)

Lessons learned from Nankai:

- Three drilling transects, five decades
- Ashizuri
 - DSDP Legs 31, 87
 - ODP Leg 190
- Muroto
 - ODP Legs 131, 190, 196
- Kumano
 - IODP Expeditions 314, 315, 316, 319, 338 (prism, forearc)
 - IODP Expeditions 322, 333, 338 (inputs)
 - IODP Expedition 348 (scheduled => deep prism)
 - IODP Expedition 3xx (planned => megasplay)

Lessons learned from Nankai:

- Facies boundaries are time-transgressive
- Facies units are not continuous along strike
- Turbidites are subducted at frontal decollement
- Sand influx/deposition were influenced by:
 - Basement topography in Shikoku Basin
 - Reorganizations of plate boundary, arc collision
 - Incision of submarine canyons
 - Eustatic lowstands
- Clay mineral assemblages were influence by:
 - Anomalous near-trench volcanism
 - Progressive unroofing of plutons, accreted sediments
 - Temporal changes in ocean water circulation

So, what does this mean for planning Hikurangi science?

Hikurangi Plateau

Davy et al. (2008) G-Cubed

Interval

Cook Strait

Mountjoy et al. (2009)

Mar. Geol.

~6.5 km

B

Pouderoux et al. (2012) Marine Geology

Transverse inputs: Fewer turbidity currents with rising S.L.

What next? A strawman:

- Holistic 3-D assessment of entire regional system
 - Source (shelf, canyons) to sink (Hikurangi Trough)
 - Provenance, dispersal paths
 - Facies, sand body geometry, submarine slides
- Discriminate between transverse/axial delivery
- Quantify sediment composition (clay + sand)
- Document cycles/timing of climate/eustasy
- Verify timing of major shifts in sedimentation rate
 Canyon incision, onset of Pleistocene glaciation?
- Drill/core to basement of Hikurangi Plateau
 - Host rocks for SSE