Volatile Fluxes at Subduction Zones: the Model Perspective

Motivation

How much H₂O is transported in & expelled from subducting slabs, and by what processes?

- mass transport (m scale to Earth scale)
- wedge & slab melting
- fate of slabs
- isotopic evolution
- rheology of slab & wedge
- interpretation of geophysical data
- seismicity

Calculate $H_2O = H_2O(t, x, y, z)$

- 1. Global subduction-zone database
- 2. Slab thermal model
- 3. Subducted sediment type & thickness
- 4. Hydration of slab @ trench
- 5. Phase relations *f*(P,T,X)
- 6. H₂O distribution & loss

1. Subduction-Zone Database

- velocity; NZ = 30 mm/a (slow; median = 65 mm/a)
- plate age; NZ = 100 Ma (old; median = 55 Ma)

2. Thermal Models

Syracuse et al. [2010]

2. Thermal Models

Syracuse et al. [2010]

slab top: 675–925°C beneath arc

slab Moho: 150–800°C beneath arc

more variation among arcs

Temperatures Match H₂O/Ce

Cooper et al [2012]

3. Sediment Composition

Plank & Langmuir [1998]

3. Subducted Sediment Thickness

Clift & Vannucchi [2004]; Scholl & von Huene [2007; 2009]

account for sediment accretion & closing of pore space

4. Hydration of Incoming Crust

Jarrard's [2003] age-based alteration model; does not consider spreading rate

4. Hydration of Incoming Mantle

4. Hydration of Incoming Mantle

Nicaragua: 10 km of 15% serpentine Ivandic et al. [2010]; Lefeldt et al. [2012]

Costa Rica: 5 km of \leq 30% serpentine van Avendonk et al. [2011]

Lombok: 5 km of 20% serpentine Planert et al. [2010]

Chile: 7 km alteration Contreras-Reyes et al. [2008]

4. Hydration of Incoming Mantle

Tonga: 24 km of 30% serpentine Contreras-Reyes et al. [2011]

Tonga: ≤8 km of 60% serpentine Savage [2012] conclusion: 15 km of 2 wt% H_2O ??

model: 2 km of 2% H_2O

5. Calculate Phase Relations *f*(P,T,X)

- *Perple_X* Gibbs free energy minimization [Connolly & Petrini, 2002]
- Na₂O-CaO-K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O-TiO₂ \pm Cr₂O₃ \pm MnO \pm CO₂ (NCKFMASHT)
- standard solution models
- weaknesses:
 - solution models imperfect (e.g., K₂O in amphibole)
 - no good melt model

5. *Perple_X* Phase Diagram Example

6. H₂O Content: Upper Igneous Crust

Upper Igneous Crust, NZ

Lower Igneous Crust

Lower Igneous Crust, NZ

Slab Uppermost Mantle

Slab & Wedge Mantle, NZ

Oceanic Sediment

chert & carbonate carry little H₂O

Sediment, NZ

NZ Facies & H₂O

metamorphic facies

NZ Facies & H₂O Loss

metamorphic facies

hydrous wedge blueschist hydrous eclogite anhydrous eclogite hydrous mantle anhydrous mantle

Global H₂O Loss with Depth

Global H₂O Loss with Depth

Summary: Global Slab H₂O Flux

Hacker [2008]

Overestimate of Trench Input?

assuming steady-state ocean [*Paral & Mukhopadhyay*, 2012] suggests overestimate; perhaps less serpentinite?

(De)Hydration & Seismicity

classic double seismic zone

Hydration–Seismicity Hypothesis

presence of fluid *permits* intermediatedepth earthquakes

not dehydration embrittlement

compaction front earthquake nucleation zone

km

dehydration front zone of microcracking

Blueschist-Out Limits Upper Seismic Zone

Blueschist-Out Limits Upper Seismic Zone

Dehydration = Slow & Seismic

'Serpentine' -Out Limits Lower Seismic Zone

'Serpentine' -Out Limits Lower Seismic Zone

van Keken et al. [2013 EGU]

P (GPa)

NZ Seismicity & Calculated Dehydration

Reyners et al. [2011]

How Does Lower Seismic Zone Hydrate?

outer rise quakes [Seno & Yamanaka, 1996]

bending at outer rise pumps fluid downward [Faccenda et al., 2009]

How Does Lower Seismic Zone Hydrate?

unbending stresses drive fluid into slab core [Faccenda et al., 2012]

Hot & Cold Slab Seismicity Different

most cold slabs: upper zone EQs in crust

hot slab: EQs in mantle

Abers et al. [2013]

EQ Where Clapeyron Slope > 0

EQ if Fluid >Porosity

Summary: Slab H₂O Cycle

- hotter zones have sediment dehydration melting
- most slabs *may* have hydrous melting

 depends on fluid flow
- slab mantle dehydrates at lowest T (~600°C)
 hydration state & fluid flow critical
- most sediment/igneous/mantle H₂O expelled beneath forearc/arc/backarc
- large along-strike change in "NZ" zone

Summary: Seismicity & H₂O

- seismicity generally in hydrated material
- seismicity in crust/mantle limited by blueschist/ 'antigorite'
- lower plane may hydrate at outer rise or in slab
- hot/cold zones upper plane EQs in mantle/crust
- negative Clapeyron slopes control seismicity??

4 Key Questions to Address

Slab Heterogeneity

Blackman et al. [2003]

local hydration carries more H_2O to depth [*Wada et al.*, 2012]

Metasomatic Bulk Compositions

Marschall & Schumacher [2012]

Fluid Flow, Including Rehydration

Faccenda et al. [2012]

M Spiegelman, AGU 2012

Non-H₂O Mass Flow

Gerya et al. [2007]

