Causes and consequences of subduction initiation

Mike Gurnis *Caltech*

GeoPrisms Workshop, Wellington, April, 2013

Outline

- Aspects of the history of Subduction Initiation in the Pacific
 - Examples of recent SI in the Pacific
 - Association of SI & back-arc spreading
 - New details of IBM formation
- Mechanical models of subduction initiation
 - Elasticity and faults
 - Long-wavelength state of compression
 - Association with back-arc spreading
 - Dependence on plate strength of far-field forces
 - Speculative match to IBM and Aleutian SZ formation
 - Connection to melting history
- Key geodynamical parameters can be measured in New Zealand
 - Puysegur SZ is making transition from forced to self-sustaining subduction
 - Regional compression associated with the formation of Tonga-Kermadec

Many Subduction Zones are very 'Young'

Gurnis, Hall & Lavier[2004]

Intense Back-Arc spreading and Subduction Initiation

Initiation of the Izu-Bonin-Mariana (IBM) subduction zone

From Mark Reagan, U. Iowa, also G3-2010

Mechanical Models for the Initiation of Subduction

Elastic bending and fault friction dominate the initial stage of subduction initiation [McKenzie, 1977]

Visco-elastic plate with fault & convection

Toth & Gurnis [1998]

Far-field response to compression of a homogeneous plate

Homogeneous 30 Myr Plate

Time-dependence of subduction, backarc basin extension & volcanism

Stern [2004]

Expeditions 351 scheduled for the JOIDES Resolution in 2014

1300 meters of (Pliocene to Eocene) sediments and 150 m of basement

Strong dependence on plate strength & far field forces

Continuous Subduction initiation with Infant-arc Spreading

Leng, Gurnis, & Asimow [2012]

a) Compositional group

For a sample point between ridge in the infant-arc and the trench

Boninite eruption follows basalts

b) Major element

(in wt%)	SiO ₂	AI_2O_3	MgO	FeO	TiO ₂	Na ₂ O	K ₂ O	CaO (Mg#)
Group A:	54.79	17.62	7.78	6.23	0.91	5.10	1.16	6.42 (69.2)
Group B:	49.35	17.28	11.06	8.46	0.82	3.04	0.05	9.95 (70.2)
Group C:	48.41	15.60	14.02	9.37	0.56	1.16	0.01	10.87 (72.9)
Group D:	52.57	12.16	16.17	8.94	0.27	0.18	0.00	9.70 (76.5)

Leng, Gurnis, & Asimow [2012]

By increasing the parameters which govern the strength of the plate, the initiation switches to continuous without back-arc spreading: Boninites eruption disappears.

What happens if we change from a constant velocity to a constant stress 'far-field' force ?

Constant Velocity BC

Constant Stress BC

Can we measure key properties of a nascent subduction zones making the transition from forced to self-sustaining ?

The gravity, bathymetry and geomorphology strongly suggests that the Puysegur Region is making this key transition from forces to self sustaining

Given the result that the onset of subduction initiation is controlled by the cumulative amount of convergence, we predict at N-S patter in the ages of initiatioin – earlier in the North

Outlook

- In the New Zealand region, we can test hypotheses and mechanical models of:
 - how the oceanic lithosphere behaves during the earlier phase of initiation by detailed studies of the Puysegur segment
 - the motion of the entire Pacific region through detailed study of the ~Eocene Lord Howe Rise compressional event and the volcanic stratigraphy of the Tonga-Kermadec fore arc